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SECTION 1
NUMERICAL SIMULATION OF 2-D FLOWS USING A 2-D

ADAPTIVE FINITE ELEMENT SCHEME

A transient, two-dimensional, finite-element shock-capturing scheme on unstructured
grids was applied to the study of a shock diffracting around a 2-D structure, representing
a 2-D cut of a 3-D train, suspended above the rails and a rigid elevated surface. The area
between the train and the surface was partially blocked by the rails, resulting in com-
plex shock diffraction processes. The results demonstrate the capability of the developed
adaptive refinement/coarsening algorithm to properly adapt to weak shocks, expansions
and contact discontinuities, and highlight the resulting excellent resolution of the captured
flow features. In addition to interesting shock diffraction and propagation phenomena, the
results demonstrate the capability of the new code to capture, and define in great detail,
vortex sheets shed from sharp comers. We show that the baroclinic effect, an inviscid pro-
cess, controls the shedding phenomenon during the diffraction phase. Hence, the Eulerian
model is able to correctly predict this process.

1.1 INTRODUCTION.

During the past ten years the CFD community has experienced a proliferation of
shock capturing schemes whose ultimate objective is the sharp, nonoscillatory capturing
of transient shocks, even those that have propagated great distances [1-3]. The practical
objective of these methodologies is to predict the loads exerted by shocks, initiated by nu-
clear or High-Explosive bursts, on stationary or moving structures located a long distance
from burst point. The results of such simulations should help improve targeting specifica-
tion requirements (for offensive purposes) or hardening criteria (for defensive objectives).
From the numerical algorithm development point of view, the long propagation times and
distances that the shocks are likely to transverse from burst to impact point, pose signif-
icantly greater demands than required from traditional shock capturing schemes, which
are only intended to produce steady, sharp, nonoscillatory shocks on airfoils, etc. [4-6]
to yield the steady lift and drag forces. Past simulations of shock wave propagation over
long distances relied on either fixed-mesh structured grid approach [2] or sliding refined
zones, intended to continously surround the shocks with a finer mesh than elsewhere in
the domain [7]. The first approach yielded coarser, diffused shocks after some propaga-
tion distance, since even for two-dimensional calculations it is not economically feasible,
even with present day class VI computers, to grid a domain of several hundreds or thou-
sands of meters with I cm size cells. The second approach was much more economical,
as only part of the domain was finely refined. Nevertheless, the computational resources
required for two-dimensional computations (both memory and computational time) were
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very high, while three-dimensional computations would have been prohibitively expensive

for production-type runs. Hence, the objective of the present effort was a natural evolution
of past deficiencies, i.e., develop a numerical scheme capable of dynamically adapting to

traveling shocks and other flow discontinuities. This approach allows us to use coarse grid

resolution everywhere in the computational domain where flow gradients are low, while ap-

plying very fine grid resolution wherever better flow resolution is required. Hence, shocks
should always advance into finely refined zones, while grid coarsening should be obtained

in areas already traversed by the shocks.

The section will first describe the CFD Methodology employed, starting with the de-
sign criteria used for the flow-solver. Thereafter, the adaptive refinement scheme employed

is presented, followed by an extensive description of the results obtained for the shock-train

case studied. The accent of the section is on the results obtained under the project rather

than on the algorithms employed (which were not developed under this effort). Therefore,

the exposition of the algorithms is kept to a sufficient, but not exhaustive, depth.

1.2 CFD METHODOLOGY.

The objective of the present effort was to simulate many 2-D and 3-D shock diffraction
processes around complex-geometry structures. Thus, the flow solver employed must:

1) Be based on grid systems that can discretize domains of arbitrary complexity;

2) Be able to simulate moving or stationary shocks without spurious overshoots;

3) Be able to allocate in the most efficient manner the degrees of freedom or equivalent

computational resources during the course of a simulation. In the present case, these three

design criteria are met as follows:

1) In order to discretize domains of arbitrary complexity, unstructured grids in conjunction

with Finite-Element Methods are used.

2) In order to simulate accurately the strong shocks present in the flowfields, a high-

resolution monotonicity-preserving algorithm for unstructured grids is used. The method,

called FEM-FCT, is based on Zalesak's [8] generalization of the Flux-Corrected Transport

(FCT) algorithms of Boris and Book [9,101 to multidimensional problems.

3) In order to allocate in the most efficient manner the degrees of freedom of the mesh, an

efficient adaptive refinement technique for transient problems is employed.

1.2.1 The Flow Solver: FEM-FCT.

As stated above, high-resolution monotonicity-preserving schemes must be developed
to simulate the strong nonlinear discontinuities present in the flows under consideration. A

number of these schemes have been developed over the last years [4-6,11,12]. The scheme
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used here is based on Zalesak's generalization [81 of the 1-D FCT schemes of Boris and

Book [9,101. Parrot and Christie [13] first analyzed FCT schemes in the context of Finite
Element Methods, and L.hner et al. [14,15] extended these ideas further to include the

solution of systems of equations and the consistent-mass matrix that yields high temporal

accuracy.

Consider a set of conservation laws given by a system of partial differential equations
of the form

OU a8F4 _rF (1.1)
W1 axi - axi'

where the advective fluxes F. = F.(U) dominate the viscous fluxes F, = F,(U). For flows

described by Eq. 1.1, discontinuities in the variables may arise (e.g., shocks or contact
discontinuities). Any numerical scheme of order higher than unity will produce overshoots
or ripples at such discontinuities (the so-called Godunov theorem). Very often, particularly
for mildly nonlinear systems, these overshoots can be tolerated. However, for the class of

problems studied here, overshoots will eventually lead to numerical instability, and will
therefore have to be suppressed.

The FCT algorithm combines a high-order scheme with a low-order scheme in such
a way that in regions where the variables under consideration vary smoothly (so that a

Taylor expansion makes sense) the high-order scheme is used, whereas in those regions
where the variables vary abruptly, the low-order scheme is favored.

The temporal discretization of Eq. 1.1 yields

Un+I = U" + AU, (1.2)

where AU is the increment of the unknowns obtained for a given scheme at time t = t".

Our aim is to obtain a AU of as high an order as possible without introducing overshoots.
To this end, we rewrite Eq. 1.2 as

U"+I = U" + AU' + (AUh - AU'), (1.3)

or

Un+I = U, + (AUh - AU'). (1.4)

Here AU" and AU' denote the increments obtained by some high- or low-order scheme,
whereas Ul is the (ripple-free) solution at time t = t"+' of the low-order scheme. The idea

behind FCT is to limit the second term on the right side of Eq. 1.4:
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U -+1 = U1 + lim(AUA - AU'), (1.5)

in such a way that no new overshoots or undershoots are created. In addition, strict
conservation on the discrete level must be maintained. The simplest way to guarantee strict
conservation for node-centered schemes (only these are considered here) is by constructing
schemes for which the sum of the contributions of each individual element (cell) to its
surrounding nodes vanishes ("all that comes in goes out"). This means that the limiting
process (Eq. 1.5) will have to be carried out in the elements (cells). Further details may
be found in References 14 and 15.

1.2.2 Transient Adaptive Refinement.

A very attractive feature of schemes based on unstructured grids is the ease with
which they incorporate adaptive refinement. The addition of further degrees of freedom
does not destroy any previous structure. Thus, the flow solver requires no further modifi-
cations when operating on an adapted grid. For many practical problems, the regions that
need to be refined are extremely small compared with the overall computational domain.
Therefore, storage and CPU requirements are typically reduced by a factor of 10 to 100
when compared to an overall fine-resolution fixed mesh [16-22). It has been our experience
that, for production runs, adaptive refinement has been the crucial element necessary to
perform simulations at an acceptable level of accuracy in a reasonable amount of time.
The simulation presented in this section is a typical example of such runs.

Several authors have studied adaptive refinement schemes [7,16,23-25]. When devel-
oping an efficient adaptation methodology for transient problems, further constraints have
to be considered: a) The method must be conservative, i.e., a mesh change should not
result in the production or loss of mass, momentum or energy, as this will produce er-
roneous shock propagation speed or will diffuse shocks or contact-discontinuities; b) The
method should not produce elements that are too small, as this will significantly reduce
the allowable time step of the explicit flow solver; c) The method must be fast, as the grid
is modified many times during the computation. In particular, it should lend itself to some
degree of parallelism; and d) The method must not be memory (storage) intensive.

These constraints are met by: a) Applying strict conservation on the discrete level and
conducting the limiting process of FCT on the elements; b) Using classical h-enrichment/
coarsening, as it does not require a major storage overhead and, due to its simplicity,
lends itself easily to vectorization; c) Allowing only one level of refinement/coat: ning per
mesh change in order to minimize the logic involved and thus CPU requirements, and d)
Avoiding successive subdivision of a triangle into two.
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1.2.3 Grid Logic.

When constructing the algorithm to refine or coarsen the grid, one faces the usual

decision of speed versus storage. The more information from the previous grid is stored,
the faster the new grid may be constructed. As storage requirement minimization was

one of the goals of the present research, we tried to keep only the essential information

needed between mesh changes without sacrificing an excessive amount of CPU time. In
the present case, six integer locations per element are kept in order to identify the "parent"

and "son" elements of any element.

The first three integers store the new three neighbor elements ("sons") of an element

that has been subdivided into four (the center element of the four is kept as "parent"). If
the element has been subdivided into two elements, the neighbor element is stored in the

first integer, whereas the remaining second and third integer locations for this element are

set to zero.

The element from which the present element originated (the parent element) is stored
in the fourth integer. If the parent element has been subdivided into two, the negative par-

ent element number is stored, allowing the distinction between the 1:2 and 1:4 refinement
cases.

The fifth integer denotes the local side of the parent element from which this element
came.

Finally, in the sixth integer location the refinement level is remembered. These six

integer locations per element are sufficient to construct further refinements or to reconstruct

the original grid.

1.2.4 Error Indicator.

Many possible error indicators have been suggested in the literature [15-19, 23-25].
Numerical experience indicates that all perform similarly. However, the following require-
ments must be met for the present application: a) The error indicator must be fast; b)

The error indicator should be dimensionless, so that more than one 'key-variable' [19]

can be monitored simultaneously; c) To be applicable to a large class of problems, the

error estimator should be bounded (independent of the solution), so that preset refine-

ment/coarsening tolerances can be employed; d) As the feature may move only very slowly
or come to a standstill (e.g., a shock entering a very dense region), the error indicator must

also be reliable for steady state applications; and e) The error indicator should mark for

refinement not only regions with strong shocks, but also regions of weak shocks, contact
discontinuities and other weak features in the flow.

A classic interpolation estimates [19] used for steady state computations [20-221 has
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been modified to meet these requirements. These estimators make use of an appropriate
seminorm for the detection of those regions needing further refinement or coarsening, e.g.,
the H2-seminorm [16,20-22,24,25]

Iu - U"110 -< c. h2. 1U12, (1.6)

where u denotes the exact and uh the approximate solution, c is a mesh-size independent
constant, h is the characteristic mesh size, and

IU12 11=YýaIia2U j2 dil. (1.7)

Second derivatives are justified here because the shape functions used in the finite element
discretization are linear. Numerically, the second derivatives at the nodes are evaluated first
via a variational statement the integral (7) is approximated conservatively by evaluating for
each element the maximum second derivative at the associated nodes. For linear elements
of constant length h in 1-D, one obtains for the first step at the nodes:

ei = h-2. IUI+I - 2. U, + UI-I 1 . (1.8)

This error indicator is dimensional, and thus is not bounded a priori. A major defect
noted in numerical experiments was that this error indicator tends to favor strong shocks.
This results from the fact that second derivatives of a key variable u were utilized. Since
the objective of the present study is to develop a methodology that accurately simulates
weak shocks and contact discontinuities, the interpolation theory error indicator given by
Eq. (1.8) was modified as follows:

El- JI,+i - 2. uI + u,-,l (1.9)
=IUI+ - UrI + IU1 - U1-II +0

where

6 = e[lU,+1l+2. IUIl+ IU-iuJ].

Dividing the second derivatives by the absolute value of the first derivatives yields
an error indicator that is bounded (0 < Er < 1), dimensionless, and prevents the eating
up effect of strong shocks. In addition, the non-dimensional error indicator permits the
use of several critical parameters simultaneously. Thus, it is possible to use both density

and vorticity for problems requiring the simultaneous tracking of shocks and vortices. The
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terms following e in Eq. 1.9 are added as a noise filter in order not to refine wiggles or

ripples that appear due to loss of monotonicity. The value for e thus depends on the
algorithm chosen to solve the PDEs that model the physical process investigated. The
multidimensional form of this error indicator is given by

E = E, "(fQ kNd 'UJ)2 (1.10)

N k,,(fa .'~ [11výu3  I (INjIUI)] dQD2 '

where NI denotes the shape-function of node I.

After the values of the error indicators in the elements are determined, all elements

lying above a preset threshold value are refined, while all elements lying below a preset
threshold value are coarsened.

1.3 RESULTS.

The transient, two-dimensional, finite-element shock-capturing scheme on unstruc-
tured grids described above was applied in this research effort to the study of a shock
interacting with a train suspended above a rigid elevated surface. The area between the
train and the surface was partially blocked by the rails.

Figures 1-1 through 1-11 show combinations of computational mesh, grid refinement
levels, pressure, density, vorticity and Mach number contours at several times. The grid
was adapted every seven time steps. Density was chosen as the key variable for the error

indicator. The incident weak shock travels from left to right, with a shock Mach number
of 1.3. The color contour plots presented used 256 contours, with blue representing the
lowest value and magenta the highest. With respect to the mesh refinement procedure,
one level of mesh refinement is defined as the division of a triangle into four, performed by
connecting the mid-faces. The color designations for the mesh refinement levels are blue
for the original grid, and green, yellow, red, magenta, and cyan for one, two, three, four,
and five refinement levels, respectively. Two parameters control mesh refinement: a) the

maximum number of refinement levels desired (five levels for this example), and b) the

minimum normal height allowed below which the grid may not be further refined. Thus,
near the train where the original grid has fine resolution, only two or three refinement
levels were obtained. Conversely, five refinement levels will be obtained at zones of coarse
initial grid, such as far above the train.
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Figure 1-1 shows the mesh, mesh refinement levels, and pressure contours for the
complete computational domain and for an expanded view around the train at t=O. A

highly refined mesh was obtained only in the immediate vicinity of the shock. These

figures indicate the futility of any attempt to grid such a computational domain, which
is several hundred meters in each direction, with a uniform fine resolution grid that will

yield captured shock wave thickness of less than 0.6 cm (about the average shock thickness
obtained in this computation).

A regular Mach reflection from the ramp is observed at t=0.4 (Figure 1-2). The well
resolved slip line (shown in the density data, Figure 1-2b) demonstrates one of the advan-
tages of employing density rather than pressure as the critical refinement parameter. A

comparison of the predicted pressure values behind the Mach stem with available experi-

mental data showed very good agreement. The incident shock hits the train at t=0.46.

The solution around the complete train at t=0.6 (Figure 1-3) shows a curved shock
reflection from the top-upstream corner of the train, followed closely by an expansion fan.

An expanded view of pressure contours near the bottom of the train at t=0.5 (Figure 1-
4a) shows the non-perturbed incident shock (shock la), the main shock reflection from
the upstream surface of the train (shock 1), the rarefaction waves expanded from the
upstream bottom corner of the train (wave 5) and the upstream top corner of the elevation
(wave 4) after the main shock passage, the reflected ramp shock (shock 2), and the curved

Mach stem (shock 3) that was further weakened by the interaction with the rarefaction
wave 4. The expanded view under the train at t=0.6 (Figure 1-4b), shows the primary

reflected shock from the train (shock 1), its reflection from the top of the elevation (shock

la); the rarefaction wave centered at the upstream bottom corner of the train (wave 5);

the reflected ramp (shock 2), its reflection from the train (shock 2a), and the rarefaction
wave produced upon the impact of this wave on the train's upstream bottom corner (wave

2b); the incident Mach stem under the train (shock 3); and the expansion wave (wave 4)

centered at the upstream corner of the ramp.

A comparison of the adapted mesh and mesh refinement levels at t=0.8 (Figures 1-
5a and 1-5b) with the pressure results (Figure 1-5c) demonstrates the ability of the grid
adaptation routine to adapt to all density gradients. Due to the initially finer grid under

the train, only three refinement levels were obtained there. In contrast, five refinement

levels were observed away from the train, where the initial grid was fairly coarse. The

pressure results at this time indicate that the shock diffraction over the top upstream

curved corner of the train produced a triple point connecting the incident shock, a Mach

stem, and a curved reflected shock (Figure 1-5c). Ramp shock reflection (shock 2 in Figure

1-4b) from the front surface of the train formed a high-amplitude Mach stem traversing

the front surface of the train.

8



Complex flow processes were observed under the train. Examination of the expanded

views under the train at t=0.7 (Figure 1-4c) and t=0.8 (Figure 1-4d) show many interesting

shock diffraction processes. At t=0.7, the incident Mach stem has just cleared the upstream

support beam (shock 1). The reflection of the incident shock from the beam has propagated

upstream (shock 3 at t=0.7 and shock la at t=0.8) and, due to its curvature, partially

reflected from the bottom of the train (shock lb at t=0.8). The diffracted incident Mach

stem (shock 1) downstream of the beam has impacted on the top of the elevation at t=0.7,

and was reflected as shock 3 at t=0.8. Immediately behind it, and partially merged, is

shock 2d, which is the transmitted part (across the beam) of shock 2a at t=0.6. The ramp

shock and its reflection from the train (shocks 2 and 2a in Figure 1-4b) are shocks 2 and

2a; the expanding rarefaction waves 2b and 5 at t=0.6 (Figure l-4b) are waves 2b and 5 at

t=0.7, and waves 2c and 2b, respectively, at t=0.8; the reflection of the main shock (shock

1 in Figure 1-4b) from the top of the elevation is shock la at t=0.7, and 7a at t=0.8, while

the reflection of shock 2a at t=0.6 (which is the reflection of the reflected ramp shock from

the train) is shock 2c at t=0.7, and shock 7b at t=0.8. The evolution of these shocks

is important in determining the vibrations on the train. Shock la at t=0.7 has partially

reflected from the upstream beam (shock 5 at t=0.8, which has also reflected from the

bottom of the train as shock 5a), and partially transmitted as shock 4 at t=0.8, which has

reflected from both the bottom of the train (shock 4a) and the top of the elevation (shock

4b). Similarly, shock 2c has expanded up and downsteam (shock 6), and reflected from the

bottom of the train (shock 6a). The low pressure zone near the top of the beam indicates

a high velocity zone created as a result of flow acceleration around the top of the beam

and the attached vortex sheet, which has just begun its roll-up process.

While the incident shock continued propagating above the train, the triple point height

grew linearly with time, and the circular expansion waves from both the bottom and top

upstream comers also continued growing linearly with time (Figures 1-3, 1-5c, 1-6a and 1-

7c), the most interesting shock evolution processes occurred under the train. Examination

of the pressure contour results under the train at t=0.9 (Figure 1-4e) and t=1.0 (Figure
1-4f) shows the virtual separation of the shock system between the support beams and the

reflected shocks upsteam of the beams; a separation resulting from the growing vortex near

the upstream support beam which will accelerate and break any approaching shock. The

leading shock (shock 1) has been completely merged with shock 4 at t=0.8. Meanwhile,
we observe the formation and rise of the triple point between shocks 1 and 3, and Mach

stem 1m. Shock 3 resulted from the merging of shocks 3 and 4b at t=0.8, an almost

completed merger as two shocks are observed to reflect from the bottom of the train at

t=0.9 (shocks 3a and 4b). Nevertheless, a single reflected shock is observed after the shocks

were reflected again from the top of the elevation (t=1.0). Another shock system observed

between the support beams are shock 6 (at t=0.9), which evolved from shock 6a at t=0.8,
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and its reflection from the top of the elevation, shock 6a (t=1.0)

Shock wave reflection upstream is characterized both by shock wave reverberation

between the bottom of the train and the top of the elevation and shock interaction with

the vortex emanating from the upstream bottom comer of the train. As an example
we point to shock lb at t=0.8 (which has just reflected from the bottom of the train),

propagating down, and reflecting from the top of the elevation as shock ic (t=0.9), and

reflecting again from the bottom of the train as shock ld (t=1.0). Similar reflection pattern
was observed for shock 5a.

Typical shock-vortex interaction can be observed in Figures 1-4e and 1-4f (t=0.9 and

1.0, respectively). The reflection of the curved shock la from the bottom of the train

(shock Ib) resulted in the formation of a triple point, with increased height from the

surface. At t=0.82, the Mach stem near the surface and the two shocks (shock la and 1b)

interact with the vortex attached to the upstream bottom comer of the train. The result

is an acceleration and diffusion of the shock near the surface of the train; both effects

decrease with increased distance from the surface. These processes result in the upstream

acceleration and diffusion of compression wave ld between t=0.8 and t=1.0. The next

shock wave system, shocks 5 and 5a, experience similar though weaker processes, perhaps

due to the weakening of the vortex.

The very low pressure zone near the upstream support beam indicates the rapid roll-

up of a vortex sheet anchored at the top-upstream comer of the beam (Figure 1-5c and

Figures 1-4e through 1-4i). The vortex roll-up process was enhanced by vortex interaction

with the system of curved reflected shocks reverberating between the bottom of the train

and the top of the elevation. A much weaker vortex sheet has also been formed near the

upstream bottom corner of the train. Mach number results at t=0.8 and later (Figures

1-6b and 1-6d at t=1.0 and t=1.2, respectively) demonstrate strong flow acceleration due

to the vortex roll-up and the reduction of the effective flow area between the top of the

elevation and the bottom of the train, with the highest velocities above the inner-most

vortex.

Since vortex dynamics is a phenomenon normally associated with viscous flow pro-

cesses, while the present numerical scheme only solves the Euler equations, the source of

this vorticity deserves further discussion.

Vorticity production, as modeled in the Bjerknes Theorem [261, incorporates both

viscous and inviscid contributions, and is expressed as:

-xVPXVp +(1.11
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where " Vorticity; v = Kinematic Viscosity; p= Pressure; and p= Density. A time-
scale and order-of-magnitude analysis of these terms indicates that the current vorticity
production is controlled by the baroclinic effect (i.e., the first term in the equation, which

represents the non-alignment of pressure and density gradients), and thus can be predicted
by the inviscid code. Laser-schilieren shadowgraph data produced in a similar shock-

train interaction experiment conducted using a sub-scale model in a shock tube facility
demonstrated vortex sheet roll-up within a few microseconds after the shock diffracted
around the corner, a time period too short for viscous processes to significantly affect the

flow. The numerical predictions for this experiment were in excellent agreement with the
experimental data. Due to lack of space they will be presented in a future publication.

The incident shock propagated past the downstream support beam at t=1.03. Re-

sults at t=1.1 and t=1.2 (Figures 1-4g and 1-4h, respectively) show that similar to the
shock diffraction process over the upstream beam (Figure 1-4d at t=0.8), incident shock
diffraction around the downstream beam resulted in the formation of curved diffracted and

reflected shocks; shocks 1 and la are the transmitted shock wave and its reflection from
the top of the elevation, respectively, while shocks 2 and 2a are the reflected shock and its

reflection from the bottom of the train. The merged shock formed of shocks 3 and 6 (at
t=1.0) has been partially transmitted as shock 6 (t=1.1) and was later reflected from the
top of the elevation as shock 6c (t=1.2), and partially reflected from the beam as shock

6d (at t=1.1 and t=1.2). Shocks 4 and 6a at t=1.0 continued to reverberate and produce
shocks 4, 6a and 6b at t=1.1, and shocks 4, 4a and 4b (beam reflection), and 6b at t=1.2.

The vorticity contour plots, Figures 1-6c and 1-6e, at t=1.0 and t=1.2, respectively, indi-

cate significant enhancement of the rolled-up vortex sheet behind the upstream beam due
to the interaction with the family of curved reflected shocks, and the initiation of a vortex

sheet behind the downstream beam.

The successful continued grid adaptation is demonstrated again at t=1.4. A com-

parison of the computational grid (Figure 1-7a), grid refinement level (Figure 1-7b), and
pressure, Mach number and vorticity contours (Figures 1-7c, 1-7d and 1-7e, respectively)

demonstrate the ability of the new methodology to adapt to both strong and weak density

gradients.

The shocks that propagated under the train emerged at t=1.22. The higher stagnation

pressure under the train resulted in faster propagation speed than above, and thus the
incident shock propagating below has emerged a short time earlier. Pressure results at

t=1.4 (Figure 1-4i) indicate that four primary shocks emerged: the incident shock (shock

1); its reflection from the top of the elevation (shock la); shock 6c; and shock 6, which has
been weakened by its upward expansion and broken due to its interaction with the stronger

shocks la and 6c. The expansion of these shocks around the bottom downstream corner of
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the train and the corner of the elevation resulted in the immediate formation of a counter-
clockwise rotating vortex sheet anchored at the corner and a cylindrical expansion wave.

The bottom-produced expansion could not propagate upstream beyond the downstream
beam, due to the transonic flow between the beam and the bottom of the train.

Among the upstream reflected shocks observed are the primary reflection from the
train upstream surface, reflections of the Mach stem from the train, and several shock
reflections from the upstream support beam. The system of shocks between the beams

continued reverberating and producing new shocks. The interactions between these curved
shocks with the rolled-up vortex attached to the upstream beam resulted in the break-up
of this sheet, as observed at t=1.4 (Figure 1-7e) and t=1.6 (Figure 1-8a).

Figure 1-8 shows vorticity contours at several times. While vorticity production was
fairiy low for shock diffraction over the rounded upper downstream corner of the train,
the system of shock waves reverberating between the support beams and between the top
of the elevation and the bottom of the train both enhanced and broke up the rolled-up
vortices attached to the support beams, as shown in Figures 1-8a, 1-Sb, 1-8c, 1-8d and 1-8e
at t=1.6, 1.8, 2.0, 2.2 and 2.4, respectively. Meanwhile, the vortices attached to the bottom
corners of the train continued their roll-up process; the one attached to the downstream
corner rolled up about four times at t=2.4 (Figure 1-8e).

The shocks diffracting around the downstream side of the train interacted with the
opposite corners at t=2.6. The computational grid, the grid adaptation levels, and the
pressure and Mach number contour results at t=2.4 (Figures 1-9a through 1-9d) demon-
strate the excellent shock adaptation capabilities of the developed methodology, even after
propagating long distances. The large disparity between the long shock propagation dis-
tance and the small size of the resolved vortices or the captured shocks thickness clearly

demonstrates the economical advantage of applying an adaptive refinement/coarsening
scheme as compared to a fixed-mesh scheme.

The shock that has diffracted over the top interacted at t=2.6 with the vortex sheet
anchored at the bottom downstream corner (Figure 1-8f). Since this curved diffracted
shock carried vorticity of opposite sign and of about equal magnitude to the vorticity of the
attached vortex sheet, the interaction caused the eventual detachment of the vortex sheet
from the corner and its downstream convection. Flow area constriction due to the vortices
shed from both the upstream and downstream beams (Figures 1-7d and 1-9d) resulted
in flow acceleration to supersonic velocities, specifically, downstream of the downstream
beam (M=-1.28). The instantaneous local flow area expansion near the downstream bottom
corner of the train resulted in the formation of a normal shock attached to that corner, and
a deceleration to M=0.65. Further downstream, effective flow-axea constriction between the
vortex attached to this corner and the vortex attached to the downstream beam accelerated
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the flow to M=1.2, which was further followed by an oblique shock as the effective flow-area

increased again.

The downward-propagating shock downstream of the train hit the bottom bevel at
t=3.1 and reflected upward. Meanwhile, the shock that emerged from under the train
continued its downstream-and-up propagation, though shock propagation upward was in-

hibited by the transonic flow above the train. This blockage effect temporarily trapped a

relatively high pressure zone downstream of the train, which could not be relieved through
the channel under the train due to the transonic flow in this zone. Meanwhile, the vor-

tices shed from the downstream beam and bottom comer were convected downstream by
the flow, as shown in Figures 1-8g, 1-8h, 1-8i, 1-8j and 1-8k, at t=3.2, 3.6, 4.2, 5.0 and

6.0, respectively. These results also show the break-up of the vortex sheet attached to

downstream beam, the roll-up of the broken sheet into a weak, clockwise-rotating vortex

(Figure 1-8h), and the rolling of the pair of counter-rotating vortices by the flow (Figures

1-8i, 1-8j and 1-8k).

The computation was continued to t=8.0, long after the system of shocks cleared the

train. At this time the flow above the train was still transonic after reaching a maximum
Mach number of M = 1.35 at t=4.5. Thus, the upward propagation of the shock reflected
from the downstream bevel was delayed, and its influence wa- still felt on the top of the

train at t=6.0 (Figure 1-10). All shocks had propagated very long distances, but were

still captured as sharp, nonoscillatory discontinuities. The captured shocks' thickness has

not changed over the past several thousand steps, as all shocks were still captured over
two to three elements, while the element size around the shock has not changed due to

the adaptive procedure. These results demonstrate, at least for the present application,

the advantage of adaptive-mesh schemes over fixed-grid schemes. Achieving similar shock

resolution with a fixed-mesh methodology would have required maintaining a fine grid vir-

tually everywhere in the computational domain, at a significantly (perhaps prohibitively)

higher computational cost. Grid refinement was observed as the shocks propagated into

new areas, while grid coarsening was observed in areas already traversed by the shocks.

Finally, it should be noted that the solution obtained above the train at later times in-
dicates a compression wave rather than a shock. This is the correct physical solution as

the initial reflected shock above the train (Figure 1-5a at t=1.0 and Figure 1-7a at t=1.4)
was significantly weakened by the strong expansion over the train (Figure 1-9c at t=2.4).

Results obtained in other simulations using significantly stronger shocks demonstrated a

reflected shock above the train, even at very late times.

Comparisons of experimental pressure and impulse time histories and the correspond-
ing numerical predictions are shown in Figures 1-11 at selected stations around the train.

Stations a and b were located on the upstream surface of the train, station c on top,
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stations d and e on the downstream surface and stations f and g on the bottom. The
experimental data were obtained in a large shock tube facility. Since the experimental
model spanned a significant portion of the width of the shock tube, it was appropriate to
model this flow with a two-dimensional algorithm. The numerical pressure-time histories
and impulses (temporally integrated pressures) are shown as thicker lines to t=8.0. The
experimental pressure and impulse data are shown in thinner lines to t=10.0. Very good
agreement is demonstrated at all locations. Physical processes controlled by shock physics
were predicted extremely well. For instance, very good agreement is demonstrated between
the predicted and measured pressure-time histories at stations six and seven, located un-
der the train; these stations exhibit a multi-shock system that resulted from the repetitive
shock reflection from the top of the elevation, the support beams, and the bottom of the
train. In contrast, the late-time experimental data (well past the diffraction phase) for sta-
tions on the train top and back indicate periodic 3-D vortex shedding, a physical process
that cannot be properly modeled by the present 2-D model.

A final note relating to the computational performance of the code: computation
time for approximately 6800 time steps consumed approximately six hours of CPU time
on a Cray 2/8-128 computer (single processor). Computation time was approximately 60
microseconds per node per time step.

1.4 SUMMARY AND CONCLUSIONS.

A new transient, two-dimensional, finite-element shock capturing scheme on unstruc-
tured grids was applied to the study of shock interaction with a train suspended above a
rigid elevated surface. The area between the train and the surface was partially blocked
by the train support beams, resulting in complex shock diffraction processes. The results
demonstrate the ability of the new adaptive refinement/coarsening algorithm to resolve
shocks in a sharp-nonoscillatory manner. In addition to interesting shock wave propaga-
tion and interaction processes, the results demonstrate the capability of the new code to
capture, and define in great detail, vortices shed from sharp comers.

Among the more interesting shock propagation processes observed were shock diffrac-
tion around sharp comers and the immediate formation of vortices, no doubt due to the
baroclinic effect; interaction of diffracted curved shocks with vortex sheets carrying vor-
ticity of identical or opposite sign, resulting in either vortex enhancement or break-up;
containment of the high pressure zone (i.e., blockage of upward propagation of shocks) on
the downstream side of the train by the supersonic/transonic flow above the train; and
the blockage of the upstream propagation of the rarefaction wave in the channel under the
train due to the transonic flow above the downstream support beam.
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SECTION 2
NUMERICAL DESIGN OF A PASSIVE SHOCK REFLECTOR

A recently developed transient, two-dimensional finite-element shock-capturing scheme
on unstructured grids, was applied to the study of a shock interacting with a passive shock
reflector placed at an opening of a vented enclosure. The objective of this effort was to
design a passive device that, while allowing the ventilation of the enclosure under steady
conditions, will prevent blast-waves impinging on the wall from entering the enclosure when
the structure is impacted by a shock. A passive reflector ("grill") was designed to take
advantage of two basic fluid dynamic processes: shock diffraction around sharp comers,
and vortex shedding from sharp comers. As the shock propagated through the grill, shock
diffraction around several comers resulted in an order-of-magnitude shock amplitude re-
duction, while transforming the steep-fronted shock into a compression wave. The vortex
shedding process significantly reduced the effective flow area, and limited the quasi-steady
flow behind the shock from entering the enclosure. From the numerical point of view,
the results demonstrate the capability of the developed adaptive refinement/coarsening
algorithm to properly adapt to weak shocks, rarefaction waves and other weak flow gra-
dients, and the resultant excellent resolution of the captured flow features. In addition
to interesting shock diffraction and propagation phenomena, the results demonstrate the
capability of the new code to capture, and define in great detail, vortex sheets shed from
sharp corners. Finally, the results demonstrate that when a design project is based on the
understanding and application of basic fluid-dynamic mechanisms, it is possible to obtain
significant improvements in performance, specifically, an order-of-magnitude reduction of
shock amplitude entering the enclosure.

2.1 INTRODUCTION.

During the past ten years, the CFD community has experienced a proliferation of a
multitude of shock capturing schemes whose ultimate objective is the sharp, nonoscillatory
capturing of transient shocks, even after propagating long distances [1-31. The practical
objective of these methodologies is to predict the loads exerted by shocks, initiated by
nuclear or High-Explosive (HE) bursts, on stationary or moving structures located a long
distance from the burst point. The results of such simulations should help improve target-
ing specification requirements (for offensive purposes) or hardening criteria (for defensive
objectives). From the numerical algorithm development point of view, the large propa-
gation times and distances that the shocks are likely to traverse from burst to impact
point pose significantly greater demands than required from traditional shock capturing
schemes. These schemes are only intended to produce steady, sharp, nonoscillatory shocks
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on airfoils, etc. [7] to yield the steady lift and drag forces. Past simulations of shock wave
propagation over long distances relied on either the fixed-mesh structured grid approach

[1,2] or sliding refined zones [20], intended to continuously surround the shocks with a finer
mesh than elsewhere in the domain. The first approach yielded coarser, diffused shocks
after some propagation distance, since even for two-dimensional calculations it is not eco-
nomically feasible, even with present day class VI computers, to grid a domain of several
hundreds or thousands of meters with I cm size cell. Worse yet, in this investigation it
is necessary to compute flow diffraction around a grill with small gaps, which requires
millimeter-scale resolution. The second approach was much more economical, as only part
of the domain was finely refined. Nevertheless, the computational resources required for
two-dimensional computations (both memory and computational time) were very high and

required knowledge of the primary shock location, while three-dimensional computations
would have been prohibitively expensive for production-type runs. Therefore, the approach
employed here was a natural evolution of past deficiencies, i.e., employ a numerical scheme
capable of dynamically adapting to traveling shocks and other flow discontinuities. This
approach allows us to use coarse grid resolution everywhere in the computational domain
where flow gradients are low, while applying very fine grid resolution wherever better flow
resolution is required. Hence, shocks should always advance into finely refined zones, while
grid coarsening should be obtained in areas already traversed by the shocks.

The objective of this study was to use the recently developed adaptive grid method-
ology on unstructured grids [11] to evaluate the effectiveness of candidate passive shock
reflector devices. This device was placed at an opening in the wall of a semi-enclosed
room. A radiator, or another heat-exchange device, was placed adjacent to the grill within
the room. The shock reflector is supposed to allow free exchange of air during normal
operations, while preventing blast waves from entering the enclosure when the structure
is impacted by a shock. A simplified schematic of the structure and the shock reflector
(often referred to as "grill") composed of simple, readily available, 900 chevrons is shown
in Figure 2-1. Three layers of chevrons were employed in this specific design. A series of
flat-plates was placed in front of the chevrons to block the flow from entering the spacing

between the chevrons.

2.2 NUMERICAL RESULTS.

The transient, two-dimensional finite-element shock-capturing adaptive scheme on
unstructured grids described in Section 1 (FEFLO27) was applied to the study of a shock
interaction with a passive shock reflector placed at an opening of a vented enclosure (Figure
2-1). The computational parameters used in the simulation included:
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"* Number of time steps per refinement: seven

"• Number of refinement levels: five

" Minimum normal size allowed: 25 pm

"* Key variable for the error indicator: density

"* Courant number: 0.4

The color contour results have 256 contours, where blue represents the lowest instantaneous

local value and magenta the highest. The color designations for the mesh refinement levels

are blue for the original mesh, and green, yellow, red, magenta and cyan for one, two, three,

four and five refinement levels, respectively: one level of mesh refinement is defined as the

division of a triangle into four, performed by connecting the mid-faces. Two parameters

controlled mesh refinement: a) the maximum number of levels desired: five levels for this

simulation; and b) the minimum normal height allowed: here, 25 pm, compared with

the length of the computational domain (approximately five meters). A similarly resolved

fixed-mesh methodology would require approximately 1.2*1010 nodes - an impossible task.

The initial conditions and the geometric details of this problem are shown in Figure

2-1, which shows both the initial pressure contours for the complete computational domain

and for an expanded view near the middle of the grill The incident weak shock, a step

function with an amplitude of 10 psi overpressure (a value chosen for demonstration pur-

poses only), was placed at t=0 to the left of the enclosed chamber. The shock propagated

from left to right. The flow behind the shock was locally subsonic, while the shock Mach

number was about 1.4. Figure 2-1 actually shows 2-D side-view schematics of the structure

and the shock reflector (which will be referred to henceforth as the "grill"). Three layers

of simple, readily available 90* chevrons were employed in this specific design. An array

of bars (flat plates) was placed in front of the chevrons to block the flow from entering

the spacing between the chevrons. This design was intended to: a) force the shock pene-

trating between the chevrons to diffract at large angles to optimize shock wave damping

by the rarefaction waves originating at the comers; b) optimize shock deflection on direct

impact at any angle; and c) produce vorticity behind the sharp comers that will reduce

the effective flow area through the choking of the flow between the chevrons.

In the following analysis of the results, we will initially describe the large-scale, mul-

tiple shock-diffraction processes from initiation to the end of the simulation; we will then

re-examine flow expansion around the top of the bar, and conclude with the discussion of

the flow around the upstream corner of the first chevron. To enhance understanding of

the physical processes and better exhibit the micro-scale physics, rather than show flow

results for the complete computational domain, we will show expanded views of only one

row of bar and chevrons combination located near the center of the grill; the lower quarter
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of the grill shown in Figure 2-lb. Thus, both the top and the bottom boundaries of this

domain are actually planes of symmetry. For convenience sake, they will be referred to in
the following discussion as the top and bottom planes, while waves transmitted from the
other side of the boundary will be referred to as reflected waves.

Figures 2-1 through 2-11 show combinations of computational mesh, grid refinement
levels, pressure, vorticity and Mach number contours at several times. Figure 2-2 shows
the mesh refinement levels, density and Mach number contours at t=0.125 ms. To better
appreciate the dimensions of the physical processes simulated and the accuracy of the nu-
merical scheme, it is noted that the thickness of the bar was 1 cm, or 10,000 pm. Excellent
mesh adaptation to the incident and reflected shocks, as well as the large recirculation
areas on top of the bar, are demonstrated. The Mach number of the flow accelerating
around the comers is 0.95, increasing with time. At t=0.15 ms, the flow Mach number
above the bar was already 1.05. The importance of this fact will be highlighted later in
the discussion.

Rarefaction wave expansion from both comers is clearly shown in both Figures 2-
2a-c (t=0.125 ms), and Figure 2-2d (t=0.18 ms), at which time the rarefaction wave
originated at the upstream comer of the bar reflected from the bottom plane (or, since
this is really a plane of symmetry, the arrival of the rarefaction wave from the opposite side
of the bar). This process is vividly demonstrated by the transition of the planar reflection
(Figure 2-2c) to a curved reflected shock (Figure 2-3b). The incident shock impinged
on the first chevron at t=0.21 ms. Simultaneously, the curved, incident shock that has
diffracted around the downstream comer of the bar, has reflected from the bottom plane.
The upstream-propagated initial reflection from the bar has reflected from the top plane
(actually, the reflected wave from the adjacent bar above). The Mach number results
(Figure 2-3b) show that the flow above the bar has reached M=1.25. These results also
show the merging of the two recirculating zones above the bar, incident shock reflection
from the upstream front of the first chevron, the instantaneous initiation of rarefaction
waves at both comers, and the simple shock reflection produced as the incident shock

propagated toward the convex center of the first chevron (an obvious wave focusing point).
Figure 2-3c (t=0.245 ms) shows the continued evolution of these processes: the incident
shock has diffracted around the upstream comer of the first chevron; two rarefaction waves
have emanated from the two upstream comers of the first chevron, the one from the bottom
comer was fairly cylindrical, while the one from the top comer was contained within the

reflected flattened shock. Incident shock wave diffraction over the 900 comers of the front
bar, followed by its diffraction around the 1350 comer of the first chevron, resulted in
significant pressure amplitude reduction of the shock penetrating past the first chevron -
only about 3.5 psi at this time.

20



The density and Mach number results at t=0.27 ms, shown in Figures 2-3d and e,

respectively, show the continued growth of the merged vortices at the top of the front bar,

where the single vortex was anchored at the upstream corner; the reflection of the shock

that originally reflected from the first chevron, from the bottom plane; and the eminent

interaction of the incident-shock reflection from the bottom plane with the two vortices

(the one anchored at the top upstream corner of the bar and the one anchored at the

upstream bottom corner of the first chevron).

Shock wave focusing at the convex center of the first chevron occurred at t=0.315 ms.

The computational grid, mesh refinement levels, density and Mach number contours at

t=0.35 ms, shown in Figures 2-4a-d, respectively, demonstrate the following: the excellent

shock adaptation; the very small ratio of area well refined (i.e., occupied by the shocks)

to the complete computational domain; the supersonic flow over the first layer of chevrons

(M=1.24 at this time); the successful mesh coarsening after shock passage; and finally,

the large amplitude of the reflected shock from the center of the first chevron (about 65

psi), much higher than would have been obtained for a regular shock reflection. The large
amplitude reflected shock will be shown at later times (Figures 2-5 to 2-8) to create a high-

pressure reflected jet that will persist for a very long time. Incidently, from a practical

point of view, the large pressure will not damage this chevron as the pressure decays

exponentially within 2-3 ms, and hence, the integrated impulse is below bending failure

level. Both the mesh refinement and density contours show systems of weak-amplitude

shocks (shocklets) emanating from the large separation zones near the corners. We will

expand on the importance of this subject later in the discussion.

The downstream-propagated weakened incident shock expanded over the second layers

of chevrons at t=0.45 ms (Figure 2-5a). While the incident shocks focused at the convex

center of the second chevron at t=0.42 ms, forming another fairly-high amplitude reflected

wave (about 18 psi at t=0.45 ms) that will help in blocking the incoming flow, the incident

shock expanded over another pair of 900 corners, and was further weakened by another

pair of cylindrical rarefaction waves expanded from both corners of the second chevron

(especially the downstream corner). Generally, the diffraction processes around the second

and third layers of chevrons were very similar to the diffraction around the first chevron,

i.e., shock wave focusing toward the center of the chevron, instantaneous localized pressure

increase, and a much larger amplitude (due to wave focusing) reflected shock. Nevertheless,

the incident and reflected pressure amplitudes decreased drastically from layer to layer

(about 65 psi for the first, 22 psi for the second and about 4.5 psi for the third). numbers

The incident wave impacted on the third layer of chevrons at about t=0.47 ms, and on

its middle at t=0.52 ms. At t=0.50 ms (Figures 2-5b and c), the amplitude of the incident

shock about to impact on the third chevron was only about 2.2 psi, resulting from the
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multiple diffraction processes it had experienced. The shock that has diffracted around
the third layer of chevrons was further weakened by another 135° diffraction process. In
fact, energy dissipation of the incident shock by interaction with eight different rarefactions
waves (i.e., propagating past eight corners), resulted in very strong attenuation of the
incident 10 psi shock wave to a mere compression wave, with an amplitude of about 1.7
psi. The results at this time (Figure 2-5c) also show the system of shocks emanating from
the complex separated vortex downstream of the front bar. This multiple-shock system
resulted from the interaction between the mean supersonic flow between the bar and the
first chevrons, and the convoluting vortex. This shock system evolves in time as the vortex
breaks down.

The vortex roll-up process was enhanced by vortex interaction with the system of
curved reflected shocks reverberating between the bar and the first chevron, and similarly,
at other times, between the various chevrons. Since vortex dynamics is a phenomenon
normally associated with viscous flow processes while the present numerical scheme only
solves the Euler equations, the source of this vorticity must be addressed.

Vorticity production, as modeled in the Bjerknes Theorem [241, incorporates both
viscous and inviscid contributions, and is expressed as:

Dý=-~V(') X Vp+ VV2 ý, (2.1)

where " Vorticity; v = Kinematic Viscosity; P = Pressure; and p = Density. A time-
scale and order-of-magnitude analysis of these terms indicates that the current vorticity

production is controlled by the baroclinic effect (i.e., the first term in the equation that
represents the non-alignment of pressure and density gradients), and thus can be predicted
by the inviscid code. Past experience with shock-train interaction [251 demonstrated vortex
sheet roll-up within a few microseconds after the shock diffracted around the corner, a
time period too short for viscous processes to significantly affect the flow. It must be
noted that we are fully aware of the contribution of numerical viscosity to the vortex
production process. Nevertheless, based on past experience with similar computations and
comparisons to experimental data, which were in excellent agreement [26], we believe this
effect to be of secondary importance.

The computational mesh, mesh refinement levels, density and Mach number contours
at t=0.6 ms, are shown in Figures 2-6a-d, respectively. These results, and the density
results shown later at t=0.65 ms (Figure 2-7), demonstrate that the wave entering the
enclosed chamber is a weakened compression wave, not a steep- fronted jhock wave. The
distinction is important not only because of the amplitude difference, but because the two
waves would stagnate to vastly different pressure values. In addition, structural response
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to the instantaneous loading of a shock is significantly more severe than the slower loading
of a compression wave. Hence, if a heat exchange device would have been placed beyond

the third layer of chevrons, the difference between a shock and a compression wave would

have meant the difference between system survival and destruction. In addition, this figure

shows, in great detail, the excellent adaptation of the multiple shock-wave system and the
sharpness of the shocks. The refinement level tolerance for this calculation was set at a
very low level. Therefore, even the weak compression waves entering the chamber are still

captured (at least one level of refinement).

The computation was continued to t=5.0 ms, long after the system of shocks cleared

the grill. Only four levels of refinement were used at this time, with a minimum nor-

mal of 0.2 mm (200 pm). The results at t=1.9 ms (Figure 2-8) demonstrate that: a) All

shocks had propagated very long distances, but were still captured as sharp, nonoscillatory

discontinuities; and b) The captured shocks' thickness did not change over several thou-
sand steps, as all shocks were still captured over two to three elements, while the element

size around the shock remained unchanged, due to the adaptive procedure. These results
demonstrate, at least for the present application, the advantage of adaptive-mesh schemes

over fixed-grid schemes. Achieving similar shock resolution with a fixed-mesh methodology
would have required maintaining a fine grid virtually everywhere in the computational do-

main, at a significantly (perhaps prohibitively) higher computational cost. Grid refinement
was observed as the shocks propagated into new areas, while grid coarsening was observed

in areas already traversed by the shocks; a) The system of compression waves entering the
enclosure had steepened, as should be expected from traveling, finite-amplitude compres-

sion waves; b) While the pressure outside the chevrons is about 12 psi (red levels at this
figure), the pressure inside was less than 1.5 psi; c) Vortices are observed to shed from all

sharp corners; and d) The vortices shed from the first and second layers of chevrons have

just about blocked the entire area between the first and second chevrons. Mach number

contours data demonstrate that the flow through the passage between the chevrons in

the first layers had accelerated to supersonic speeds and formed a normal shock ahead

of the center of the second layer chevron. From there, the flow has to turn 90°, literally

squeezing between vortices shed from the first and second layers of chevrons, accelerate

to supersonic speeds again, and then turn again by about 135* to pass through the next

opening restricted by the vortex shed from the third layer. The choking of the flow at

two locations restricts the mass, momentum and energy flux into the enclosure. Thus,

the designed shock-reflector appears to limit the high-energy flow outside the enclosure

from entering. The pressure inside and outside the enclosure has to equalize eventually.

However, the objective was to design a passive reflector that will slow this process to a

rate that can be tolerated by the sensitive equipment inside the enclosure. This objective

has been achieved.
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A final note relating to the computational performance of the code: computation time

for approximately 12,000 time steps consumed approximately 8 hours of CPU time on a

Cray YMP 8/128 computer (single processor). Computation time per node per time step
was approximately 30 microseconds.

2.2.1 Shock Wave Diffraction Processes.

After examining the overall success of this device in mitigating shock amplitude and

harmonic content entering the chamber, we will examine, in detail, shock diffraction around

the first bar and the first chevron. As noted above, the greatest advantage of the adaptive

grid methodology is that while it enables us to obtain an engineering level solution (i.e., a

correct solution obtained within reasonable CPU and memory expenditures at a fast turn-

around pace), it also allows the examination of the most minute physical detail, enabled

by the minimum mesh size of 25 pm.

2.2.2 Shock Wave Diffraction Around the Front Bar.

Figure 2-9 shows expanded views of Mach number, density and vorticity contours

around the top of the front bar between t=0.1375 ms to t=0.21 ms. To better appreciate

the resolution displayed in these figures, it is noted that the bar thickness is 1 cm (10000

pm). A minimum normal size of 25 pm would allow placing about 400 points across the

bar, a sufficient resolution.

At t=0.1375 ms, about 60 micro-seconds after shock impact, and only about 28 micro-

seconds after shock diffraction around the downstream comer, two fully rolled-up vortices

are shown to be shed from both comers. The vortex shed from the upstream comer

develops a classic Kelvin-Helmholtz instability, with growing amplitude in the downstream

direction. The multiple shocklets shown at this time (Figure 2-9a at t=0.1375) to emanate

from the downstream-side of this vortex resulted from the interaction of the supersonic flow

above the vortex with the unstable shear-layer - a flow resembling an unsteady supersonic

flow over a curved wavy wall. It is postulated that the system of sound waves originated

from the roll-up process of the shear layer (it is well known that a roll-up vortex acts as a

quadrupole) is amplified by the supersonic flow. This assumption is supported by the fact

that similar simulations with lower (subsonic) Mach numbers flows (and lower shock over-

pressures) did not produce the system of oriented (normal to the flow) shocklets observed

here. This process will be further investigated in the future.

The two shed vortices continue to grow, almost self-similarly, as shown by the density

and vorticity results at t=0.15 ms (Figures 2-9b and 2-9g, respectively). Eventually, down-

stream convection of the sound produced by the multiple-shocklet system resulted in an

instability growth at the downstream vortex at t=0.18 ms, with an identical frequency, as

24



shown by both the density and Mach number results, Figures 2-9c and 2-9d, respectively.

The growing upstream, unstable vortex reached the downstream corner at t=0.21
ms. Figures 2-9e, 2-9f and 2-9h show the Mach number and vorticity contours, at t=0.21
ms and 0.245 ms, respectively. These results show the growing instability of the shear
layer originating from the upstream comer, the merging and lifting of the two vortices
by the entrained flow below the downstream vortex, the strong shock attached to the
lifting upstream vortex, the two recirculation bubbles within this vortex, and the system
of shocklets (or flow instability) still attached to the bottom vortex.

2.2.3 Shock Wave Diffraction Around the First Chevron.

The incident shock diffracted around the first chevron upstream comer at about
t=0.25 ms. The density contours at t=0.30 ms, only 50 Ps after shock passage (Fig-
ure 2-10a), show a fully developed, rolled-up vortex sheet attached to this comer. This
figure also shows part of the leading incident shock, and its reflection from the bottom
plane. The reflected shock has been broken by the chevron. Notice that the reflected
shock under the chevron has propagated further than the shock on the left, as it has been
accelerated by the vortex. In addition, the reflected shock from both faces of the chevron
should have been continuous. Instead, on the underside of the chevron, the reflected shock
has been broken by the different-direction velocities in the different segments of the vortex.

Figure 2-10b at t=0.35 ms, and Figures 2-10c and 2-10d, at t=0.40 ms, respectively,
show the growth of the vortex and the downstream propagation of the Kelvin-Helmholtz

instability originated near the comer. The system of unstable shocks that resulted from
the interaction of the mean supersonic flow with the convoluted vortex attached to the
upstream bar (Figure 2-5c at t=0.45 ms), has reached this comer, as shown in Figures 2-
11a. In addition, the primary shock reflected from the center of the first chevron (Figures
2-4 and 2-5) has diffracted around the comer. The results show the break-up of this shock
into two primary elements: the down-propagating part outside the vortex, and the part
that has diffracted around the comer into the vortex. This part has been decelerated by
the vortex since it was propagating against the flow near the wall. The shock between
these cuts has been diffused, or sheared, by the local strong gradient (i.e., the subsonic
to supersonic transition) across the vortex sheet (Figure 2-11a2). In addition, another
shock, which has previously reflected from the bottom plane, is shown at this time to pass
through the vortex, and is located exactly at the comer. When traced through the vortex,
it is shown that the shock has been stretched or compressed depending on the propagation
direction relative to the local flow; the shock immediately outside the vortex has been
accelerated downstream; inside the vortex the shock was either accelerated or decelerated,
depending on the local mean flow direction.
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Figures 2-11a through 2-11g show a series of density, Mach number and vorticity

contours at times of 0.45, 0.48, 0.49, 0.50, 0.51, 0.55 and 0.60 ms, respectively. This

series clearly shows: a) continuous growth of the unstable vortex; b) multiple shock-vortex

interactions that resulted in partial break-up of the vortex; and c) shock acceleration-

deceleration by the local flow within and outside the vortex. Notice, for instance, the

pair of shocks that appeared on the right side at t=0.49 ms. These shocks reflected from

the second chevron (Figure 2-5b). The curvature of these shock changed in time since

different parts of the shock were convected at different local velocities; the shock portion

near the bottom plane was convected against mean flow Mach number significantly lower

than at the circumference of the vortex (Figure 2-6d). Another example is shown in Figure

2-11c through g as the shock that has reflected from the bottom plane and propagated

upward near the edge of the chevron was partially transmitted and partially reflected by

the vortex. The portion outside had propagated upward slower than the shock portion

inside the vortex (Figure 2-11fl), simply because the mean flow outside was transonic

and in the opposite direction, while the flow inside the vortex was almost stagnant. Still

another example is the second reflected shock from the second chevron, moving in the

observed frames from right to left. Comparison of the results at t=0.55 and t=0.60 ms

(Figures 2-11f and g, respectively) shows the stretching and compression of this shock as

it passes through the vortex. While at t=0.55 ins this shock was almost continuous (at

the right side of the figure), at t=0.60 ms the broken shock is clearly traceable through

the vortex, up to the reflection from the bottom face of the first chevron; d) shock-induced
vortex instability. Shock interaction with the unstable vortex is shown to induce further

instability, and some directionality in the vortex break-up process. Notice, for instance,

vortex break-up due to the interaction with the upstream moving shock shown in Figures

2-11f through 2-11f 3 , and 2-11gi through 2-11g3, with the strongest effect immediately

after shock passage (compare, for instance, Figures 2-11f2 and 2-11g2 ).

2.3 SUMMARY AND CONCLUSIONS.

A recently developed transient, two-dimensional, finite-element, shock-capturing scheme

on unstructured grids was applied to the study of a shock interaction with a passive shock-

reflector placed at an opening of a vented enclosure. The objective of this effort was to

design a passive device which, while allowing the normal ventilation of the enclosure under

steady conditions, will prevent blast-waves impinging on the wall from entering the enclo-

sure. Shock wave attenuation resulted here from the shock diffraction processes around

the chevrons, that damped the incident shock wave amplitude and harmonic content, and

eventually transformed the shock to a low- amplitude compression wave by the time it

entered the enclosure. In addition, the sharp comers of the grill were relied on to produce

vortices which significantly reduced the effective flow area (a self- choking device) to slow
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the outside quasi-steady high-pressure flow behind the shock from entering the chamber.

From the numerical point of view, the results demonstrate the capability of the devel-
oped adaptive refinement/coarsening algorithm to properly adapt to weak shocks, rarefac-
tion waves and contact discontinuities and the resultant excellent resolution of the captured
flow features. All shocks had propagated very long distances, but were still captured as
sharp, nonoscillatory discontinuities. Grid refinement was observed as the shocks propa-
gated into new areas, while grid coarsening was observed in areas already traversed by the

shocks. In addition, the captured shocks' thickness did not change over several thousand
steps, as all shocks were still captured over two to three elements, while the element size
around the shock has be-.n unchanged, thanks to the adaptive procedure.

Among the many interesting physical processes monitored in this computation were
the growth of unstable shear layers, transient shock interaction with unstable shear layers,
shock-shock interaction, shock-rarefaction interaction, etc. Vortices are observed to shed
from all sharp corners. The vortex roll-up process was enhanced by vortex interaction
with the system of curved reflected shocks reverberating in the system. Since vortex dy-
namics is a phenomenon normally associated with viscous flow processes while the present
numerical scheme only solves the Euler equations, we have investigated this phenomenon
and concluded that vorticity production immediately after shock passage resulted from the
"Bjerknes Effect." The shed vortices resulted in effective flow-area restrictions. Specifi-
cally, the vortices shed from the first and second layers of chevrons almost completely
blocked the flow between the first and second chevrons, choking the flow and restricting
the mass, momentum and energy flux into the enclosure. Thus, the designed shock-reflector
appears to limit the high-energy flow outside the enclosure from entering. The pressure
inside and outside the enclosure has to equalize eventually. However, the objective was to
design a passive reflector that will slow down this process to a rate that can be tolerated
by the sensitive equipment inside the enclosure. This objective has been achieved.
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SECTION 3
NUMERICAL SIMULATION OF SHOCK INTERACTION

WITH COMPLEX-GEOMETRY 3-D ABOVE-GROUND STRUCTURES

This section describes the application of a recently developed three-dimensional adap-
tive finite element shock capturing scheme on unstructured tetrahedral grids to the sim-
ulation of shock diffraction processes around typical complex geometry three-dimensional
structures such as tanks and missiles. The 3-D surfaces were defined using a new CAD-
CAM-like user-friendly solid-body generator (PREGEN3D). The advancing front method
then generated the volume grid. The shock diffraction simulations were initiated by im-
posing the initial and boundary conditions; only two levels of refinement were used to
refine the shock at its initial position. The resolution and fidelity of the simulated shock
wave diffraction phenomena, performed via a solution of the transient compressible Eu-
ler equations, were enhanced by the application of the classic h-enrichment/coarsening
grid adaptation scheme, with density as the critical adaptation parameter. A high de-
gree of vectorization was achieved by pre-sorting the elements and then performing the
refinement/coarsening on the assembled groups. Further reductions in CPU-requirements
were realized by optimizing the identification and sorting of elements for refinement and
deletion.

The computational results obtained demonstrate the successful application of the new
3-D adaptation procedure to shock interaction with curved surfaces - a new capability. Ex-
cellent shock adaptation and resolution are obtained at all times; all shocks are captured
as sharp discontinuities, without producing pre- or post-shock oscillations. Several inter-
esting three-dimensional shock diffraction processes are identified and discussed in detail.
It is shown that the geometry must be described precisely in order to obtain the correct lift
and drag forces on the vehicle. Finally, the results demonstrate the robust performance of
the method and show, at least for the simulation of strongly unsteady flows, considerable
savings in both CPU-time and storage over fixed-mesh structured grid schemes.

3.1 INTRODUCTION.

The solution of large-scale transient problems around complex geometries is a common
problem to many areas of computational fluid dynamics. Before developing a numerical
methodology to simulate these flows, one must choose between structured or unstructured
grid schemes. Both have their advantages and disadvantages. The biggest disadvantages
of the structured grid approach are: a) the gridding of a reasonably complex, engineer-
ing type 3-D structure may require many man-months, compared to days/weeks with the
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unstructured grid approach; and b) the complexity involved in developing adaptation algo-
rithms on structured grids for strongly transient features. The advantages of the structured

grid methodology over unstructured grids are: a) significantly reduced memory overhead

requirements (about 5-15 times lower); and b) reduced computation time per node per
time step (about 3 times faster). Thus, for a typical 3-D computation, the unstructured,

adaptive approach may be superior only for flow simulation around a complex geometry

structure and/or shock-wave propagation over large temporal and spatial domains.

Past attempts to simulate transient shock interaction with complex geometry 3-D bod-

ies have been limited. Some experience was gained applying a structured, non-adaptive
grid approach to simulate shock interaction with 3-D semi-submerged structures. One

approach prescribed the sloped surfaces of the body as "staircases" [1,2], which would nat-

urally yield a somewhat erroneous solution. Another disadvantage of this approach is that

numerical boundary layers are developed whenever shocks climbing along the staircases

represent curved boundaries.

The objective of the present research was to numerically simulate shock diffraction

processes about complex-geometry 3-D structures. Under a separate project, we recently
developed a numerical methodology capable of efficiently simulating transient shock-shock

and shock-structure interactions for realistic, complex, engineering-type three-dimensional

geometries. The unstructured grid approach [3] was the most suitable for generating

surface and volume grids for complex-geometry bodies. In addition, since our typical

areas of interest require the simulation of strong shocks, both steady and transient, a

high-resolution monotonicity-preserving algorithm for unstructured grids was developed.

The method, called FEM-FCT [41, is based on Zalesak's [51 generalization of the Flux-

Corrected Transport (FCT) algorithms [6,71 to multidimensional problems. Extensive
application of FEM-FCT to 2-D simulations [8,9], as well as limited experience with 3-

D (shock wave propagation over simplified geometries [10]), has demonstrated excellent

agreement with experimental data. With these schemes, both traveling as well as stationary

shocks are captured within two-three gridpoints (for either 2-D or 3-D) without the over-

and undershoots that appear in linear schemes. Finally, since the flowfields typically are

smooth except for a few regions where strong gradients appear, efficient adaptive refinement

techniques for transient problems are required.

As noted above, a major advantage of the unstructured over the structured grid ap-

proach is the ease with which each complex geometry structure can be discretized [11].

Generating the surface or volume grids for a typical airplane or vehicle may take several

man-months using a structured grid approach, and only one to two weeks using an unstruc-

tured grid [11,12]. A second very attractive feature of unstructured grids is the ease with

which adaptive refinement can be incorporated. Since additional degrees of freedom do
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not destroy any previous structure, the flow solver requires no further modification when

operating on an adapted grid. For many practical problems, the regions that need to be

refined are extremely small as compared to the overall domain. Therefore, the savings in
storage and CPU-requirements typically range between 50-100 as compared to an overall
fine mesh [8,13,14]. Our experience in 2-D [8,9] indicates that for the majority of the daily

production-type runs, adaptive refinement makes the difference in the ability or inability
to run the problems to an acceptable accuracy in a reasonable time. Without it, we would

be forced to use much coarser grids, with lower accuracy, for the same expense. Here we
extend the 2-D capabilities to 3-D. Although more complex in coding, the rewards of a

3-D adaptive refinement capability are greater than those encountered in 2-D.

The meshes used for the present calculations were generated using FRGEN3D [12,17].

This unstructured grid generator is based on the advancing front method. After defin-

ing the surface description of the domain to be gridded, these surfaces are triangulated.
Thereafter, the face forming the smallest new element is deleted from the front, and a new

element is added. This process is repeated recursively until no more faces are left in the

front. FRGEN3D generates approximately 25,000 tetrahedra per minute on the Cray-2.

This number may increase for small meshes (less than 50,000 tetrahedra), as more front
collapses per element generated. For very large meshes, a global h-refinement option is

available. With it, the rate of generation is increased to about 200,000 tetrahedra per

minute.

Over the past three years it became clear that FRGEN3D by itself was not sufficient

to quickly generate the mesh required for an arbitrary 3-D problem. Although it solves the
generation problem once and for all, the surface generation then becomes the dominant

man-hour bottleneck. Therefore, under a separate research project we recently developed

FECAD, a suite of tools that allows the user to produce FRGEN3D-compatible, error-

free input in a faster way. FECAD not only allows the user to exercise basic CAD-

CAM operations (shrinking, translations, rotations, surface lofting, etc.), but also eases

the merging of several parts of the surface into one cohesive, well-defined input-file. This
allows the merger of files produced by different users and/or different surface generators.

FECAD has a whole series of built-in diagnostics to avoid such undesirable features as
doubly defined points, isolated points or lines, and badly defined lines or surfaces. FECAD

proved invaluable when trying to construct in a matter of days an error-free FRGEN3D-

compatible input-file.

Another important capability that was developed over the past four years was PRE-

BACK, a semi-structured 3-D background generator. Experience with the user community

has shown that the preferred way of generating background grids is by lofting a 2-D tri-

angulation in the third dimension or by rotation. PREBACK allows both operations. In
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addition, it allows interactive operations to move background grid-points around (trans-

lation, rotation, shrinking, etc.), as well as to modify the grid-generation parameters in

space (size, shape).

The flow solver employed was FEFLO74, a 3-D ALE hydro-solver based on FEM-FCT

110,15,16]. H-refinement [13,16] is the preferred approach for grid adaption. The high order
scheme used is the consistent-mass Taylor-Galerkin algorithm. Combined with a modified
second order Lapidus artificial viscosity scheme, the resulting scheme is second order accu-

rate in space and fourth order accurate in phase. The spatio-temporal adaptation is based
on local h-refinement, where the refinement/deletion criterion is a modified H2-seminorm

[13]. Based on past experience with simulations of shock wave propagation processes in
both 2-D and 3-D, density was chosen as the critical parameter for the refinement/deletion

criterion.

Post-processing was performed with the FEPOST3D and MOVIESUBS packages.
FEPOST3D is based on FEPLOT4D [18], but performs all the CPU-intensive filtering
operations on the Cray. Only the plane- or surface-triangulations are sent back to the
SG-IRIS-4D/80GT for plotting. The user specifies before the run the planes and surfaces
to be inspected. Although seemingly trivial, this step was in a large part responsible for

the success of the present effort. It implied waiting 30 seconds for a plot-file (about 2.5-
4Mbytes of information), instead of hours (about 130-160Mbytes for a complete flowfield

mesh). In addition, it allowed the production of movies.

In the following sections we will briefly review some of the main schemes that are in-
tegrated into FEFLO74, such as the efficient error indicator and the FCT-FEM algorithm.
More detailed analysis is found in Ref [19]. In addition, we include a description of some

of the recent algorithm modifications and improvements that reduced CPU requirements

and improved the performance of the methodology.

3.2 THE ERROR INDICATOR.

Many variants of an efficient error indicator had been investigated in the past [3-
10]. Here, we seek a method that is efficient and reliable for transient compressible flow
problems. This leads us to the following design criteria for the error indicator:

a) The error indicator should be fast.

b) The error indicator should be dimensionless, so that several key variables can be

monitored simultaneously.

c) The error indicator should be bounded, so that no further user intervention becomes

necessary as the solution evolves.
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d) The error indicator should not only mark the regions with strong shocks to be refined,
but also weak shocks, contact discontinuities and other weak features in the flow.

For the refinement method, the design criteria are as follows:

a) The method should be conservative, i.e., a mesh change should not result in the
production or loss of mass, momentum or energy.

b) The method should not produce elements that are too small, as this would reduce too

severely the allowable timestep of the explicit flow solvers employed.

c) The method should be fast. In particular, it should lend itself to some degree of
parallelism.

d) The method should not involve a major storage overhead.

3.2.1 The Error Indicator.

An error indicator that meets the design criteria (a-d) was proposed in [3] as follows:

h2 second derivatives(
-h firat derivativesl + e Imean valuel (3.1)

By dividing the second derivatives by the absolute value of the first derivatives, the error
indicator becomes bounded, dimensionless, and the "eating up" effect of strong shocks is
avoided. The terms following e are added as a noise filter in order not to refine "wiggles"
or "ripples" which may appear due to loss of monotonicity. The value for e thus depends
on the algorithm chosen to solve the PDEs describing the physical process at hand. The

multidimensional form of this error indicator is given by

E,= •k, (fa N',NJdQ" Uj)2  (3.2)'~ ~~JJý 2klflN'I [I.NýJuj +,e (1IýJwI)

where N' denotes the shape-function of node I. This error indicator has performed very
well in 2-D over the years [3,4]. However, when first used in 3-D, it proved unreliable. The

source for this seemingly inconsistent behavior was found to originate from the large local
variations in element size, shape, as well as the number of elements surrounding a point.

These will produce large variations of the second term in the denominator that are not
based on physics, but on the mesh structure itself. The solution was to modify the error

indicator as follows:
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where MMATJ is the lumped mass-matrix at point I, and h, the average element length
at point I. This error indicator proved to be remarkably insensitive to local variations

in element size and shape, while still yielding the correct indicator values for physical
phenomena of interest. We attribute this robust performance to the smoothing effects

of two averaging operations working simultaneously: the lumped mass-matrix and the
point-lengths.

After determining the values of the error indicators in the elements, all elements
lying above a preset threshold value CTORE are refined, while all elements lying below a
p7 threshold value CTODE are coarsened. Protective layers of elements are added to

SL _Id the elements to be refined, so that the "feature" (e.g., a shock) always travels into

an already refined region. The number of protective layers that are added depends on the
Courant-number employed and the number of time steps taken between grid modifications.
Usually the refinement is performed every 5-10 time steps, so that a Courant-number of

C.=0.2 is sufficient.

3.2.2 Adaptive Refinement Method.

Our previous experience in 2-D indicates that the only two refinement methods that
are truly general and efficient for the class of problems considered here are h-refinement

[3,5] and remeshing [7,8,10]. However, for strongly unsteady problems, where a new grid is
required every 5-10 time steps, local h-refinement seems to be preferable. Several reasons

can be given for this choice:

a) Conservation presents no problem for h-refinement.

b) No interpolations other than the ones naturally given by the element shape-functions
are required. Therefore, no numerical diffusion is introduced by the adaptive refine-

ment procedure. This is in contrast to adaptive remeshing, where the grids before and
after a mesh change may not have the same points in common. The required inter-

polations of the unkuowns will result in an increased amount of numerical diffusion
[9].

c) H-refinement is very well suited to vector- and parallel processors. This is of particular

importance in the present context, where a mesh change is performed every seven time
steps, and a large percentage of mesh points is affected in each mesh change.

d) H-refinement is more robust than remeshing.
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As described above, we limit the number of refinement/coarsening levels per mesh change
to one. Moreover, we only allow refinement of a tetrahedron into two (along a side),
four (along a face) or eight new tetrahedra. We call these tetrahedra 1:2, 1:4 and 1:8
tetrahedra or refinement cases respectively. At the same time, a 1:2 or 1:4 tetrahedron can
only be refined further to a 1:4 tetrahedron, or by first going back to a 1:8 tetrahedron
with subsequent further refinement of the 8 sub-elements. We call these the 2:4, 2:8+ and
4:8+ refinement cases. The refinement cases are summarized in Figure 3-1. This restrictive
set of refinement rules is necessary to avoid the appearance of ill-deformed elements. At
the same time, it considerably simplifies the refinement/coarsening logic. An interesting
phenomenon that does not appear in 2-D is the apparently free choice of the inner diagonal
for the 1:8 refinement case. As shown in Figure 3-2, we can place the inner four elements
around the inner diagonals 5-10, 6-8, or 7-9. In the present case, the shortest inner diagonal
was chosen. This choice produces the smallest amount of distorted tetrahedra in the refined

grid. When coarsening, we again only allow a limited number of cases that are compatible
with the refinement. Thus, the coarsening cases become 8:4, 8:2, 8:1, 4:2, 4:1, 2:1. These
coarsening cases are summarized in Figure 3-3.

When constructing the algorithm to refine or coarsen the grid, one faces the usual
decision of speed versus storage. The more information from the previous grid that is
stored, the faster the new grid may be constructed. As storage requirement minimization
was one of the goals of the present research, we tried to keep only the essential information
needed between mesh changes while minimizing CPU time. This was accomplished by using
a modified tree-structure which requires twelve integer locations per element in order to
identify the parent and son elements of any element, as well as the element type.

The first seven integers store the new elements (sons) of an element that has been
subdivided into eight (1:8). For the 1:4 and 1:2 cases, the sons are also stored in this
allocated space, and the remaining integer locations are set to zero. In the eighth integer
the element from which the present element originated (the parent element) is stored. The
ninth integer denotes the position number in the parent element from which this element
came. The tenth integer denotes the element type. We can either have parents or sons of
1:8, 1:4 or 1:2 tetrahedra. We mark these with a positive value of the element type for the
parents, and a negative value for the sons. Thus, for example, the son of a 1:8 element
would be marked as -8. Finally, in the eleventh and twelfth integer locations the local and
global refinement levels are remembered. These twelve integer locations per element are
sufficient to construct further refinements or to reconstruct the original grid.

3.2.3 Algorithmic Implementation.

Having outlined the basic refinement/coarsening strategy, we can now describe in more
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depth its algorithmic implementation. One complete grid change algorithmically requires
the following five steps:

1) Construction of the missing grid information needed for a mesh change.

2) Identification of the elements to be refined.

3) Identification of the elements to be deleted.

4) Refinement of the grid where needed.

5) Coarsening of the grid where needed.

1. Construction of Missing Grid Information. The missing information consists of the
sides of the mesh and the sides belonging to each element. The sides are dynamically
stored in two arrays, one containing the two points each side connects and the other one (a
pointer-array) containing the lowest side-number reaching out of a point. The formation of
these two arrays is accomplished in three main loops over the elements, which are partially
vectorizable. After having formed these two side-arrays, a further loop over the elements

is performed, identifying which sides belong to each element.

2. Identification of Elements to be Refined. The aim of this sub-step is to determine on
which sides further gridpoints need to be introduced, so that the resulting refinement
patterns on an element-level belong to the allowed cases listed above, thus producing a
compatible, valid new mesh. Five main steps are necessary to achieve this goal:

a) Mark elements that require refinement;

b) Add protective layers of elements to be refined;

c) Avoid elements that become too small, or that have been refined too often.

d) Obtain preliminary list of sides where new points will be introduced;

e) Add further sides to this list until an admissible refinement pattern is achieved.

a) Mark elements that reuire refinement

Using the modified error indicator given by Eq. (1.3) and the prescribed refinement toler-
ance CTORE, those elements that require further refinement are marked using the array
LELEM(I:NELEM). This array is marked as LELEM(IE)=1 =; element is to be refined,
LELEM(IE)=O =o element is not to be refined.

b) Add protective layers of elements to be refined

If protective layers of elements are to be added ahead of the feature to be refined, we
perform, for each additional layer, the following set of operations:

37



- Zero an integer point-array (e.g., LPOIN(I;NPOIN)=O);

- Loop over the elements to be refined, marking (e.g., LPOIN(IP)=I) all points con-

nected to these elements;

- Zero the integer element-array (e.g., LELEM(I;NELEM)=O);

- Loop over all elements; if at least one point of a given element has been marked, refine

this element (e.g., LELEM(IE)=I)

c) Avoid elements that become too small. or that have been refined too often

A sharp feature in the flow domain, like a shock, will tend to produce error indicator

values that always lie above the refinement tolerance CTORE. As a consequence, elements

close to such a feature will be refined every time the mesh is adapted. In order to avoid

this "refinement ad infinitum," one has to impose either a maximum permissible number

of refinement levels per element, or/and a minimum allowable element size. Given these

constraints, those elements which are already too small (if a minimum allowed element

size has been given), or have already been refined too many times (if a maximum allowed

number of refinement levels has been prescribed), are deleted from the list of elements to

be refined.

d) Obtain nreliminarv list of sides for new points

Given the side/element information obtained above, we can now determine a first set of

sides on which new gridpoints need to be introduced. This set of sides is still preliminary,

as we only allow certain types of refinement.

e) Add further sides to this list until an admissible refinement Dattern is achieved

The list of sides marked for the introduction of new points is still preliminary at this

point. In most cases, it will not lead to an admissible refinement pattern to construct a

new mesh. Therefore, further sides are marked for the introduction of new points until an

admissible refinement pattern is reached. This is accomplished by looping several times

over the elements, checking on an element level whether the set of sides marked can lead

to an admissible new set of sub-elements. The algorithm used is based on the observation

that the admissible cases are based on the introduction of new points along one side (1:2),

three contiguous sides (1:4), or six contiguous sides (1:8). These admissible cases can be

obtained from the following element-by-element algorithm:

- Set the node-array LNODE(1:4)=O;

- Loop over the sides of the element: if the side has been marked for the introduction of

a new point, set LNODE(IP1)=1, LNODE(IP2)=1, where IP1, IP2 are the end-nodes

corresponding to this side;

- Loop over the sides of the element: if LNODE(IP1)=- and LNODE(IP2)=1, mark
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the side marked for the introduction of a new point.

Practical calculations with several admissible layers of refinement and large grids revealed
that sometimes up to 15 passes over the mesh were required to obtain an admissible set of
sides. A considerable reduction in CPU was achieved by presorting the elements as follows:

- Add up all the sides marked for refinement in an element;

- If 0,1 or 6 sides were marked: do not consider further;

- If 4 or 5 sides were marked: mark all sides of this element to be refined;

-If 2 or 3 sides were marked: analyze in depth.

This then yields the final set of sides on which new gridpoints are introduced.

3. Identification of Elements to be Deleted. The aim of this sub-step is to determine which
points are to be deleted, so that the resulting coarsening patterns on an element-level belong
to the allowed cases listed above, thus producing a compatible, valid new mesh. Four main
steps are necessary to achieve this goal:

a) Mark elements to be deleted;

b) Filter out elements where the parent and all sons are to be deleted;

c) Obtain preliminary list of points to be deleted;

d) Delete points from this list until an admissible coarsening pattern is achieved.

a) Mark elements to be deleted

As before, we start by determining from the modified error indicator given by Eq. (1.3) and
the prescribed deletion tolerance CTODE, those elements that should be coarsened. Thus,
we mark an element array LELEM(1:NELEM) as follows: LELEM(IE)=-1 =, element is

to be deleted, LELEM(IE)=O =:, element is not to be deleted.

b) Filter out elements where parent and all sons are to be deleted

It is clear that only those elements should be deleted, for which both the parent as well
as all its sons have been marked for deletion. Therefore, only the parent elements to be
coarsened are considered further. For these elements, a check is performed whether their
respective son elements have also been marked for deletion. If any of the son elements have
not been marked for deletion, neither the parent-element nor any of its sons are considered
further.

c) Obtain Rreliminarv list of Doints to be deleted

Given the list of parent-elements to be coarsened, we can now determine a preliminary
list of points to be deleted. Thus, all the points that would be deleted if all the elements
contained in this list were coarsened are marked as "total deletion points".
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d) Delete goints from this list until an admissible coarseningU attern is achieved

The list of total deletion points obtained in the previous step is only preliminary, as unal-
lowed coarsening cases may appear on an element level. We therefore perform loops over
the elements, deleting all those total deletion points that would result in allowed coarsen-
ing cases for the elements adjoining them. This process is stopped when no incompatible
total deletion points are left.

4. Refinement of the Grid Where Needed. The introduction of further points and elements
is performed in two independent steps, which in principle could be performed in parallel.

1) Points: To add further points, the sides marked for refinement in sub-step 2 are grouped
together. For each of these sides a new grid-point will be introduced. The interpolation of
the coordinates and unknowns is then performed using the side/point information obtained
in sub-step 1. These new coordinates and unknowns are added to their respective arrays.
In the same way new boundary conditions are introduced where required.

2) Elements: In order to add further elements, the sides marked for refinement are labelled
with their new gridpoint-number. Thereafter, the element/side information obtained in
sub-step I above is employed to add the new elements. The elements to be refined are
grouped together according to the refinement cases shown in Figure 3-1. Each case is
treated in block fashion in a separate subroutine. Perhaps the major breakthrough of the

present work was the reduction of the many possible refinement cases to only six. In order
to accomplish this, some information for the 2:8+ and the 4:8+ cases is stored ahead in

scratch arrays. After these elements have been refined according to the 2:8 and 4:8 cases,
their sons are screened for further refinement using this information. All sons that require
further refinement are then grouped together as 1:2 or 1:4 cases, and processed in turn.

5. Coarsening of the Grid Where Needed. The deletion of points and elements is again
performed in two independent steps, which in principle could be performed in parallel.

a) Points: The points to be deleted having been marked in sub-step 3 above, all that
remains to be done is to fill up the voids in the coordinate-, unknown- and boundary
condition-arrays by renumbering points and boundary conditions.

b) Elements: The deletion of elements is again performed blockwise, by grouping together
all elements corresponding to the coarsening cases shown in Figure 3-3. Thereafter, the
elements are also renumbered (in order to fill up the gaps left by the deleted elements),
and the point-renumbering is taken into consideration within the connectivity-arrays.

3.2.4 Recent Algorithm Modifications.

We have recently significantly modified the adaptive finite element methodology for

transient problems in 3-D [6]. Since for typical shock calculations, mesh adaption takes
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place every 5-10 time steps, we concluded that every stage of the adaption process must be

thoroughly optimized. The two areas that required the most intense optimization efforts

were:

a) Error indicators for grids with large local variations of element size and shape, and

b) Faster construction of the new mesh.

Improved error indicators: As an error indicator we use a modified interpolation theory

error indicator:

E -=x• lk,,1 (f 0 NIN,Jdfl" Uj) 2  (3.4)

\JEkM(f INI [IN UjI + e (IN-'IUI) d1l) 2 '

where I lenotes the shape-function of node I. By dividing the second derivatives by the

absolute value of the first derivatives the error indicator becomes bounded, dimensionless,

and the 'eating up' effect of strong shocks is avoided. This error indicator has performed

very well in 2-D over the years [2). However, when first used in 3-D, it proved unreliable.

The source for this seemingly inconsistent behavior was found to stem from the large local

variations in element size, shape, as well as the number of elements surrounding a point

encountered in typical 3-D unstructured grids. These will produce large variations of the

second term in the denominator, which are not based on physics but on the mesh structure

itself. The solution was to modify this error indicator as follows:

E, = k •,t(fn N'NJd. ) 2 1 (3.5)
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where MMATI is the lumped mass-matrix at point I, and h, the average element length

at point I. This error indicator proved to be remarkably insensitive to local variations

in element size and shape, while still yielding the correct indicator values for physical

phenomena of interest. We attribute this good performance to the smoothing effects of

two averaging operations working simultaneously: the lumped mass-matrix and the point-

lengths.

Faster construction of the new mesh.

The main CPU-intensive operations performed during one mesh change are finding the

sides and the faces of each element, determining the refinement and coarsening patterns,

correcting boundary points, and renumbering the elements. Although seemingly trivial,

these operations account for a significant percentage of total CPU time. We developed

new, optimal algorithms for them. Two examples are described here in more depth:
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1) Determining the list of sides for new points

Given the side/element information, and a list of elements to be refined, a first set of
sides on which new gridpoints need to be introduced is determined. In most cases, it
will not lead to an admissible refinement pattern. Therefore, further sides are marked

for the introduction of new points until an admissible refinement pattern is reached.
This is done by looping several times over the elements, checking on an element level
whether the set of sides marked can lead to an admissible new set of sub-elements.

Practical calculations revealed that sometimes up to 15 passes over the mesh where
required to obtain an admissible set of sides. An 80%-90% reduction in CPU was
achieved by presorting the elements as follows:

- Add up all the sides marked for refinement in an element;

- If 0,1 or 6 sides were marked: do not consider further;

- If 4 or 5 sides were marked: mark all sides of this element to be refined;

- If 2 or 3 sides were marked: analyze in depth.

2) Element renumbering

In order to vectorize the element assembly as much as possible, the elements are
renumbered, such that within each assembly pass a point is accessed only once by
the elements. This renumbering has to take place after every mesh change. Before
optimization, it took over 10% of the total CPU time for typical runs. The renumbering
subroutine was optimized by working only on the remaining elements, and extensive
scalar optimization, minimizing the number of operations and memory access. With
the new renumbering algorithm, the CPU-time required for this operation dropped to
less than 1%.

3.2.5 Recent Modifications to the H-Refinement Algorithm.

Over the past two years, we have significantly modified the adaptive finite element

methodology for transient problems in 3-D [10]. Since for typical shock calculations mesh
adaption takes place every 5 to 10 time steps, it has been concluded that every stage of
the adaption process must be thoroughly optimized. The two areas that required the most
intense optimization efforts were error indicators for grids with large local variations of
element size and shape, and faster construction of the new mesh.

Improved error indicators.

As an error indicator we use a modified interpolation theory error indicator:
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where NI denotes the shape-function of node I. By dividing the second derivatives by the

absolute value of the first derivatives, the error indicator becomes bounded, dimensionless,
and the "eating up" effect of strong shocks is avoided. This error indicator has performed
very well in 2-D over the years [8]. However, when first used in 3-D, it proved unreliable.

The source of this seemingly inconsistent behavior was found to stem from the large local
variations in element size and shape, as well as the number of elements surrounding a point
encountered in typical 3-D unstructured grids. These wil produce large variations of the
second term in the denominator that are not based on physics, but on the mesh structure
itself. The solution was to modify this error indicator as follows:

=I . I (fa Nk ,N) (3.7)
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where MMATJ is the lumped mass-matrix at point I, and hi the average element length

at point I. This error indicator proved to be remarkably insensitive to local variations
in element size and shape, while still yielding the correct indicator values for physical
phenomena of interest. We attribute this good performance to the smoothing effects of
two averaging operations working simultaneously: the lumped mass-matrix and the point-
lengths.

Faster construction of the new mesh.

The main CPU-intensive operations performed during one mesh change are finding the
sides and the faces of each element, determining the refinement and coarsening patterns,
correcting boundary points, and renumbering the elements. Although seemingly trivial,
these operations account for a significant percentage of total CPU time. We developed
new, optimal algorithms for them. Two examples are described here in more depth:

a) Determining the List of Sides for New Points

Given the side/element information, and a list of elements to be refined, a first set of
sides on which new gridpoints need to be introduced is determined. In most cases, it
will not lead to an admissible refinement pattern. Therefore, further sides are marked
for the introduction of new points until an admissible refinement pattern is reached.
This is done by looping several times over the elements, checking on an element level
whether the set of sides marked can lead to an admissible new set of sub-elements.

Practical calculations revealed that sometimes up to 15 passes over the mesh were
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required to obtain an admissible set of sides. An 80%-90% reduction in CPU was
achieved by presorting the elements as follows:

- Add up all the sides marked for refinement in an element;

- If 0,1 or 6 sides were marked; do not consider further;

-If 4 or 5 sides were marked; mark all sides of this element to be refined;

-If 2 or 3 sides were marked; analyze in depth.

b) Element Renumbering

In order to vectorize the element assembly as much as possible, the elements are
renumbered such that within each assembly pass a point is accessed only once by
the elements. This renumbering has to take place after every mesh change. Before
optimization, it took over 10% of the total CPU time for typical runs. The renumbering
subroutine was optimized by working only on the remaining elements, and extensive
scalar optimization by minimizing the number of operations and memory access. With
the new renumbering algorithm, the CPU-time required for this operation dropped to
less than 1%.

3.3 SHOCK INTERACTION WITH A GENERIC TANK.

The first simulation of shock diffraction about a complex-geometry three-dimensional
structure conducted under this project was a simulation of shock interaction with a generic
tank configuration (closely resembling the West German Leopard). Since the shock im-
pinged head-on on the tank, a plane of symmetry exists and only half of the domain can

be modelled.

Initial tests with the new three-dimensional code described above demonstrated its
ability to capture moving and stationary shocks over three elements without loss of mono-
tonicity. For this class of problems and the algorithm employed it was found that the
following choice of refinement/coarsening parameters produced nonoscillatory shocks and
rarefactions:

- refinement tolerance: CTORE=0.18

- coarsening tolerance: CTODE=0.09

- noise parameter: e =0.12

- key variable: density

- refinement frequency: every 7 time steps

- number of protective layers: none

- Courant number of the hydro-solver: C = 0.45.

44



Figures 3-4 through 3-12 show the adapted computational grid and pressure contours
at several times during the computation. Since it is difficult to visualize results in the
computational volume, results will be presented only on the boundaries or on specified

planes. The +X direction, the shock propagation direction (Figure 3-4), will be referred
to as the axial direction, the +Y direction as the vertical direction, and the +Z direction
as the cross-stream direction. Plane X-Y is the plane of symmetry, as shown in Figure 3-4.

Since it was intended to integrate the solution to t=50 ms, the computational domain had

to be significantly larger than shown in this figure: 20 m upstream of the tank (to allow
for shock reflection), 25 m downstream of the tank, 15 m in the vertical direction and 20 m
in the cross-stream direction. Past experience with 2-D simulations [41 demonstrated that

advantage of the adaptive, unstructured grid approach vs. the structured grid approach
when applied to shock propagation over large distances. The ability to adapt and refine
only where needed was shown to be even more important for the 3-D simulations. The
shocks developed in the computational domain are always captured as sharp discontinuities,
demonstrating the effectiveness of the new methodology. The results (especially at later
times) demonstrate the advantage of using an adaptive scheme, as the reflected 3-D shocks
were sharply captured even after propagating significant distances. A similarly resolved

shock computed with a fixed, structured mesh would have required maintaining a fine grid
resolution everywhere in the computational volume, at a prohibitively high computational
cost. Grid refinement is observed as the shocks propagate into new volumes, while grid
coarsening is observed in areas already traversed by the shocks. As expected, the later

time results exhibit significantly weaker shocks than observed in the past for corresponding

2-D simulations, due to three-dimensional expansion processes.

Figure 3-4 shows a superimposition of the pressure contours and the adapted mesh
on the boundaries at t=0. A shock with an amplitude of 10 psi overpressure and low
supersonic Mach number (1.14) was placed approximately 1.0 m upstream of the cannon.

The initial mesh consisted of 71,219 points and 405,400 elements. Later in the computation,
the average computational mesh consisted of approximately 230,000 points and 1.3 million
tetrahedra.

The shock impinged on the cannon at t=3.0 ms (Figure 3-5), at which time a basically
planar reflection was observed. Three-dimensional expansion processes would immediately

relieve the high pressure reflected shock. Thus, at t=4.2 ms (Figure 3-6b), the three-
dimensionally expanded shock was observed at a X-Y plane located 0.5 m from the plane
of symmetry, while the amplitude of the reflected shock has been drastically reduced and
was considerably lower than predicted by 2-D models. The computational mesh, demon-
strated excellent adaptation to the 3-D shock (Figures 3-6a and 3-7a, at t=4.2 and 5.5

ms, respectively). Three levels of refinement are observed, with a minimum normal height
of 0.6 cm. The shock is about to impinge on the front chassis of the tank at t=5.5 ms.
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Nevertheless, the large tetrahedra ahead of the shock (Figure 3-7a), between the shock and

the treads, were refined in preparation for shock arrival, and thus the refined mesh on the
front chassis and treads. The pressure contours at this time (Figure 3-7b) show further
expansion of the reflected shock from the cannon, although the reflected shock has not yet
arrived to a X-Y plane located 1.5 m from the plane of symmetry.

The propagating shock hits the front chassis at t=5.9 ms. The adapted mesh and
pressure contours on the tank surface, shown in Figures 3-8a and 3-8b, respectively, demon-
strate the grid adaptation to flow gradients. In addition to the well-refined incident and
reflected shocks, strong expansions are observed around all sharp corners. The incident
shock is shown on the chassis and the sides of the tank. Several 3-D reflected shocks are
observed. Figures 3-8c and 3-8d show pressure contours on three X-Y planes, located at

Z=0.5 m, Z=1.5 m and Z=2.75 m, respectively. The results at all planes exhibit an almost
spherical reflection (shock 1) from the slanted front of the chassis (shown in Figure 3-8a).
The reflected shock has impacted on the ground. Figure 3-8e shows a superimposition
of the pressure contours on the boundaries and two X-Y planes located at Z=1.5 m and

Z=2.75 m from the plane of symmetry (shown in the figure on the left and right sides,
respectively). Although the incident shock was planar and the reflection in the vertical
direction was fairly uniform above the chassis, the reflection pattern below the chassis
is more complex. While the incident shock passed under the tank unimpeded (Figures

3-8c and 3-8d), strong reflections from the treads are observed (Figure 3-8e). The higher
stagnation pressures ahead of the treads resulted in greater upstream reflection distances
than near the plane of symmetry, where the incident shock was free to propagate under
the tank and the observed upstream reflection is from the chassis. It should be noted
that the outline of the shocks shown in Figure 3-8e represent the outer surface of a single,
very complex three-dimensional reflected shock (called shock 1). New graphic tools are

needed to exhibit the three-dimensional nature of these shocks. We intend to develop such
capabilities in the near future.

The reflected shocks from the treads are three-dimensional and later expand to fill the
space under the chassis. Thus, at later times, a more uniform (i.e., planar) reflection front
was observed to propagate upstream (Figure 3-10b). The reflection of shock 1 from the
ground (shock 2) impinged on the treads and reflected (shock 3 in Figure 3-8b). While the

incident shock propagated past the sloped-down panel of the front chassis, a downward
propagating shock reflected and tailed the incident shock (shock D in Figure 3-8c). A
strong expansion around this corner is shown in Figures 3-8c and 3-8d. Examination

of these figures (note Figures 3-8b and 3-8e) indicates that the reflected shock from the
chassis (shock 1), with a fairly high pressure amplitude, impinged on the cannon, exerting
additional bending moments.
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The incident shock impacted on the turret at about t=11.9 ms (Figure 3-9a). Strong
reflection from the turret (shock TI) is observed at t=12.87 (Figure 3-9b). Since the
rarefaction waves propagated from the turret edges to the center, the largest pressure
amplitude, and hence furthest upstream reflection distance, was observed on the chassis at
the plane of symmetry (Figure 3-9b). Notice that at this time the incident shock continued

forward propagation in the narrow spacing between the turret and the chassis, and has
almost impacted on the cylindrical turret base.

The complex system of three-dimensional shocks shown in Figures 3-8 continued their
evolution. The primary reflected shock (shock 1) continued expanding, while the pressure

rise across the shock continued to decrease. The decay rate was significantly higher than
for corresponding 2-D calculations, no doubt due to the added expansion around the tank
in the cross-stream (Z) direction. While shock 3 continued expanding ahead of the treads
(Figure 3-9b), shock 2 (under the chassis) reflected from the chassis (shock 2a in Figure

3-9c), and shock D reflected from the ground, propagated up and was about to impact on
the bottom of the tank.

The incident shock reflected from the front of the cylindrical turret base at t=13.0 Ms.
The adapted mesh and pressure contours figures at t=15.53 ms, Figures 3-10a and 3-10b,
respectively, demonstrate continued mesh adaptation to all flow gradients, shocks as well as
rarefactions. Figures 3-10b and 3-11 (and many others not shown here) demonstrate strong
reflection (shock T2 ) from the turret base at the plane of symmetry. The shock amplitude

and reflection distance decreased with increased angle from the plane of symmetry, as
predicted by previous simulations of planar shock interaction with a cylinder [4]. Similarly,
the reflection from the turret (shock TI) expanded spherically. Figure 3-11 (at t=15.53 ms)

attempts to present the spherical expansion of shock T1 , as demonstrated by the pressure
contours on the plane of symmetry (an X-Y plane), the tank chassis (an X-Z plane), and a

Y-Z plane at 2.0 m (shock T1.). Meanwhile, complex shock evolution continued under the
tank, as shown in Figure 3-10c, for a X-Y plane at Z=0.5 m. While the primary reflected
shock (shock 1) continued upstream reflection, shock 2 expanded in the vertical direction.
Its reflection, combined with the reflection of shock D, from the down-sloped surface at
the front of the tank, is shock 2b. The reflection of the curved shock 2a (Figure 3-9c) from

the ground is shock 2c, while shock 2d is the reflection of shock D from the bottom of the

tank and the ground.

The calculation was continued to later times. Due to the complexity of the evolved
solution, the latest results presented are for t=19.69 ms, when the shock was still propagat-
ing over the turret (Figure 3-12a). The back-view (Figure 3-12b) shows a nice expansion
of the shock behind the circular turret base, and demonstrates the sharp, nonoscillatory

incident and reflected shocks.
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Total computation time (to t=25 ms real time) was approximately 23-25 CPU hours
on a 128 MWords Cray 2 computer. Computation time per node per time step was
approDxmately 180 microseconds, including the refinement/deletion process, which added

approximately 20-25 percent to the overall computation time.

Finally, it is noted that a deficiency of the unstructured grid schemes is the large
memory overhead required for the three-dimensional algorithm: approximately 380 words

per node. As noted above, this overhead can be reduced to less than 250 words per node

by re-computing certain geometric variables rather than storing them. Nevertheless, such

an overhead necessitates the usage of the large static-memory, relatively slow, Cray 2 (128
MWords) supercomputer for most practical 3-D simulations. To alleviate this problem,
a new dynamic domain-splitting type algorithm will be developed in the near future. In
this algorithm, the computational domain will be split at each refinement/deletion cycle
to multiple domains. This will allow the usage of faster, smaller static-memory computers
with a solid-state-disc, such as the Cray Y-MP.

3.4 SHOCK INTERACTION WITH A T-62 TANK.

The second simulation conducted under this project was the simulation of 3-D shock
diffraction phenomena around a modern main battlefield tank, in this case a T-62 tank. For
this class of problems and the algorithm employed, past experience (and experience gained
during this study) indicated that the following choice of refinement/coarsening parameters
produced the best results:

- refinement tolerance: CTORE=0.095

- coarsening tolerance: CTODE=0.0675

- noise parameter: e = 0.28

- key variable: density

- refinement frequency: every 5-7 time steps

- number of protective layers: none

- Courant number of the hydro-solver: C = 0.8.

The results of the two simulations conducted in which a strong shock impacted either
back-on or side-on a T-62 modern main battlefield tank, are shown in Figures 3-13 - 3-19.
The pressure contour results are shown on the surfaces only in -the immediate vicinity of
the tank, in order to reduce the dump-files size (dumped every 10 time steps), and hence
reduce field transfer and post-processing time.

Figures 3-13a-d show several views of the solid body model and the surface triangula-
tion. While the turret data were available from a CAD-CAM system (BRL-CAD), all other

48



data were measured directly from the tank. The generation of the surface and volume grids
took three days, demonstrating the versatility of the grid generation package (FRGEN3D,

PREGEN3D, PREBACK). It should be noted that once the surface triangulation is per-

formed, the generation of the volume mesh, using the advancing front algorithm (12,171 is

completely automatic. Generating such a grid with a structured grid approach would have
taken significantly longer.

3.5 BACK IMPACT.

The first simulation modeled shock impact on the tank from the back. Taking advan-

tage of the symmetry of this problem, the X-Y plane was defined as a plane of symmetry.
The initial grid included only 20,591 points, 100,343 elements, and 7,816 surface points.

The incident shock was placed (t=0) 1.5 meters behind the tank. After adapting to the
initial shock using only two levels of refinement, the number of points increased to 41,846,
the number of elements to 221,482 and the number of surface points to 9,159. During

the computation, the number of grid points increased to about 285,000 (the maximum we
could fit in a Cray-2 with an allowable memory usage of 100 million words), the number

of elements to about 1.8 million, and the number of surface points to about 40,000.

Supersonic boundary conditions were imposed on all outflow boundaries due to the
high Mach number of the flow behind the shock. Flow conditions on the upstream boundary
were prescribed. Symmetric conditions were posed at the plane of symmetry. Tangential

boundary conditions were imposed on the tank. The computational domain stretched a
distance of 100 m in the axial direction (+X), 25 m in the transverse direction (+Z),

and 25 m in the vertical direction (+Y). The minimum tetrahedron normal size allowed
after two refinements was 0.5 cm. Maintaining this resolution with a structured, fixed-

mesh algorithm on such a large computational volume, even for a multi-zone (multi-block)

approach, would have required a significantly larger (100 times larger) computational grid,

thus significantly increasing computational costs and memory requirements.

Shock evolution around the tank during the diffraction phase is shown in Figures
3-14a through i. Figure 3-14a shows pressure contours on the tank's surface and the
plane of symmetry after 200 time steps. Figures 3-15a and b show pressure contours at

this time on two X-Y planes located at Z=0.5 and 1.5 meters, respectively. The results

show the almost-planar reflection of the shock from the tail of the back-deck. Very little

pressure relief through the expansion of rarefaction waves emanating from the corners is

observed, due to the very short time after shock impact (Figure 3-15a). Thus, the reflected
pressure amplitude at the center of the back-plane was in excellent agreement with the

corresponding value obtained via the solution of the 1-D Riemann problem. Strong planar

shock reflection is also observed from the back of the ammunition train. A significantly
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weaker spherical reflection was observed from the curved back of the treads (Figure 3-15b).
Shock propagation over the back-deck shows no increase in pressure (from the incident
pressure value) as the incident shock is normal to the back-deck and passed the sharp 90°
back-deck corner without producing a Mach-stem.

Figure 3-14b at 400 steps shows a mirror imaged view of pressure contours on the
surface of the tank. Pressure contours on the ground show the reflected shock from the
back-plane (still very weak due to the mostly planar reflection), spherical shock reflection
from the back of the treads, and shock wave focusing between the treads and the ground.
This focusing effect produced the highest overpressure values obtained in this computation.
This figure also exhibits one of the more interesting processes observed in this computa-
tion: shock diffraction and focusing around and between the wheels. High overpressure
values were obtained whenever the shock wave, which propagated normal to the primary
axis of the wheels, was focused between the treads and a wheel. Hence a system of rever-
berating shocks between the wheels and between the wheels/treads/wheel cover assembly
was formed. Similarly, high overpressure values were obtained as the shocks converged

within the downstream arcs of the cylindrical reams. Conversely, low overpressures were
obtained within the upstream arcs of the reams, contributing to a high torque force on the
wheels. Figures 3-14c and 3-15c show this phenomenon at t=600 steps. These results also
show the (by now) almost cylindrical shock reflection from the back-plane with a large
pressure imprint on the ground (Figure 3-15c). We observe here the initiation of a Mach
stem, with the stem, the original reflected shock, its reflection from the ground and the
resulting triple point, all clearly defined.

The incident shock impacted on the turret at t=800 steps (Figure 3-14d). The planar
data at Z=1.0 m (Figure 3-15d) demonstrate the rise (off the ground) of the triple point
and the truly three-dimensional character of the Mach stem, as the pressure is observed
to decay behind the stem with increased distance in the transverse direction. Analysis
of pressure data at other planes showed that the overpressure value behind the stem was
fairly uniform in the +Z direction up to Z=1.2 m, about the width of the back-deck, and
decayed rapidly afterwards. This conclusion was supported by later results (Figure 3-14e
at 1000 steps, and Figures 3-15e-g at 1200 steps). Another interesting 3-D shock reflection
phenomenon was the reflection from the treads-ground corner. The high pressure relief is
again truly three-dimensional, as seen in the pressure contours data on the ground, the
treads, and the different planar data (Figures 3-15c through 3-15f at t=1200 steps).

Complex shock diffraction processes were observed due to the shock interaction with
the turret. Figure 3-14e at 1000 steps, and Figures 3-14g, 3-15e, f and g at 1200 steps and
later results demonstrate that large amplitude reflections were obtained on turret surfaces
normal or almost normal to the flow, while weak reflections and rarefactions were observed
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at turret surfaces parallel or inclined at small angles to the flow. The initial reflection

from the turret looked like a bow shock at and near the plane of symmetry (Figures 3-14e

and 3-15e), while no reflection was observed near the edge (in the +Z direction) of the

turret, where the incident shock was parallel to the turret surface (Figures 3-15g and h at

Z=1.0 m and 1.5 m, respectively). At later times (Figures 3-14f through h), pressure relief

near the top inhibited the upstream propagation of the reflected shock, while the shock

immediately above the back-deck propagated a much larger distance upstream, forming

a very complex 3-D shock with a strong spatial dependence. Indeed, pressure data at

points on top of the back-deck located only about 40-60 cm apart experienced significantly

different reflected shock amplitudes, as will be shown later.

These results demonstrate that a precise geometric description of the complex geome-

try 3-D body is required to obtain the correct load on the structure. A simplified simulation

of this process using a block to represent the turret would yield erroneous loading on the

deck top: a critical requirement.

The primary reflected shock from the back-deck has reached an apparent "quasi-

steady" stand-off distance after about 2,200 time steps. This stand-off distance is critically

dependent on the exact geometric description of the deck-treads-side traines assembly that

determines the percentage of blocked area. The stand-off distance, in turn, determines the

lift and drag forces on the tank during the diffraction and drag phases.

The results at later times (after the shock propagated past the turret) are shown in

Figure 3-14i (2,800 time steps). These results (and others not shown here) indicate that

the shock that emerged from under the deck (up-front), led the shock that propagated

above and around the turret by as much as one meter. This higher propagation velocity

and stagnation pressure under the tank resulted from the propagation of the incident

shock across a sloped surface at the bottom back of the deck, a surface that acted as a

(2-D) compression ramp. The results also show the complex quasi-steady reflected 3-D

shock upstream of the turret. Flow expansion downstream of the tank's back-plane has

accelerated the flow to transonic speeds near the back-deck, and to supersonic speeds

high above the deck. Thus the observed compression wave near the bottom of the turret,
and the oblique shock near the top. Naturally, this phenomena varied in the transverse

direction due to the reduced blockage by the turret.

Figures 3-16a through d show superpositions of the pressure contours and adpated

mesh after 200, 400, 600, and 1000 time steps, respectively. These results demonstrate

the excellent shock adaption capability of the new algorithm, as observed on all surfaces.

Investigation of several planar surfaces demonstrated equally successful adaption in the

volume. Only two levels of refinement were utilized here. All shocks are observed to be
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fully refined and are captured over two to three elements. No wiggles are observed in the
solution.

The results presented here show the shock evolution around the tank only during the
diffraction phase. The computation was actually continued to a later time, when the shock

has propagated a long distance (about 30 meters) downstream. Even after propagating
such a long distance, all shocks, reflected or transmitted, were still captured as sharp,

nonoscillatory discontinuities, with a minimum tetrahedron normal size of less than 1.5
cm. These results demonstrate the advantage of the adaptive, unstructured grid approach

over fixed-grid, structured codes (i.e., significant reductions of CPU time and memory

requirements). Utilizing these schemes to propagate a shock over such long distances with
the presecribed resolution may be prohibitively expensive.

The computation of more than 7,000 time steps consumed approximately 60 CPU
hours on a Cray-2.

3.6 SIDE IMPACT.

The third computation simulated shock impingement side-on on the same tank. Fig-

ures 3-17a through c show the superimposed mesh and pressure contours at 0, 300, and 600

time steps. Excellent grid adaption was obtained. The Gourard shaded pressure contours

at 300, 600, and 800 time steps (Figures 3-18a, c and d, respectively), and the enlarged

view of the pressure contours results between wheels three and four at 300 steps (Figure

3-18b) demonstrate, in addition to the high fidelity of the computations, many interesting
shock diffraction phenomena. Among them:

a) The stand-off distance of the quasi-steady reflected shock was significantly smaller than

for the back-on impingement. This reduction results from the large spacing between the
wheels that allows the transmission of a significant portion of the incident shock energy.

This phenomenon points out the importance of the accurate description of the complex
geometry wheels-treads-deck-cover assembly. Improper geometric modeling that, for in-

stance, will over-restrict the flow (i.e., smaller spacing), will result in higher percentage of

reflected energy, and hence higher reflected pressure amplitude; this, in turn, will result in
higher drag force exerted on the vehicle.

b) Higher stagnation pressure under the deck than above the turret resulted in higher
propagation speed below, and hence, generated a lift force on the tank.

c) The integrated drag force on the turret was higher than for the back-on attack. The

combined higher lift and drag forces will increase the probability of the tank overturning.

Nevertheless, the load exerted on the top of the back-deck was significantly diminished, as

the reflected shock amplitude decreased; very little reflection from the turret was observed

on the back-deck near the centerplane after 800 steps.
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d) Due to shock reflection from the turret and its impingement on the cannon, a large

bending moment was exerted on the cannon.

e) Full stagnation was obtained in front of the blocked wheels (Figures 3-18c and d). The

shock traversed the outside of the wheels at grazing angles and was only partially stagnated
on the side of the main deck.

Pressure-time histories at several stations were compared to experimental data ob-

tained in a field test. The agreement between the measured and predicted data was very

good.

The computation of the diffraction phase for the side-on impingement consumed ap-

proximately 16 CPU hours on a Cray-2.

3.7 COMPARISON OF PRESSURE-TIME HISTORIES.

Comparisons of pressure-time histories between the results obtained for the back-and
side-impact simulations are shown in Figures 3-19a-i for several locations around the tank.

All pressure and time data shown are nondimensional. Figure 3-19a shows pressure-time

histories at the back-end of the tank. The initial back-impact shock completely stagnated
to a value that was in very good agreement with both 1-D analytical analysis and the

experimental data. The small pressure increase at about t=5 is the reflected wave from

the turret. In comparison, the shock for the side impact traversed the back-plate at a

grazing angle and no reflection or pressure increase was observed.

The next four figures show pressure-time histories at four stations on the back-deck.

The pressures-contours data (Figures 3-14 and 3-15) demonstrate the large spatial pressure

variation on the back-deck due to the reflected shock from the turret. Figures 3-19b and c

show pressure-time histories at two stations on the centerline, one (station 29) fairly close

to the turret, the other (station 34) only 0.8 m further upstream. For the back-impact
shock, the reflected shock amplitude was reduced by about a factor of three over this

distance (18.2 at station 29 vs. 6.5 at station 34). For the side-impact, the differences are
not as significant, and in fact, the station further from the turret demonstrates a second
shock that resulted from shock diffraction through the spacing between the ammunition

traines and the back-deck. Stations off the centerline demonstrate shock overpressure
dependence on distance from both the turret and the centerline. Pressure data at station

43, located 30 cm upstream of station 34, and 50 cm off centerline, demonstrate a significant

reduction in reflected shock overpressure; the peak value was about 4.5 times lower than

that obtained at a station located on the centerline at identical distance from the turret.

Pressure results at station 57 (Figure 3-19e), located about 1.0 m further upstream and 20

cm closer to C.L., show further reduction of the reflected shock amplitude. The results for

the side-impact show a second compression resulting from shock diffraction through the

53



spacing between the ammunition traines and the back-deck. These results, combined with

the pressure-contour results (Figures 3-14 and 3-15), demonstrate the need to accurately
model the turret. Modeling of the turret as a square block would have resulted in erroneous

load distribution on the back-deck, and hence, erroneous damage assessment.

Figure 3-19f shows pressure-time histories at a station located close to the comman-
der's hatch (on the turret) on a surface almost normal to the side-impact shock, but about
parallel to the back-impact shock. The geometry hence dictates a reflected shock with a
fairly large amplitude for the side-impact case, in contrast to an almost grazing angle and
zero reflection for the back-impact shock.

Pressure data at station 10 (Figure 3-19g), located on the front forward-sloping portion
of the turret on the centerline, show expansion of the shock coming from the back, with a
lower pressure than the incident pressure. The data for the side-impact show that although
the station was located on a plane almost parallel to the flow, shock diffraction around the
rounded turret increased the pressure due to the formation of a Mach stem. Figure 3-19h,
for station 3, located on the down-sloped front deck just below the cannon, shows a fairly

significant shock reflection from the cannon for the side-impact case. The results for the
back-impact only show the arrival of the incident, expanding shock.

Finally, pressure-time histories for station 84 (Figure 3-19i), located under the tank
on the centerline at about two-thirds the length from the front, show (for the back-impact
case) the arrival of the increased-amplitude shock, and a smooth decay afterwards. The
shock amplitude increased due to the compression by the sloped portion of the back-

deck and the formation of a Mach stem as the shock propagated along the bottom of
the tank. For the side-impact the solution is even more complex. Since this station was

located behind a wheel, it was not directly influenced by the incident shock but rather by
the diffracted shocks between the wheels. The predicted oscillations that followed were
the diffraction of the incident shock entering the cavity under the deck through openings
between other wheels. Finally, the large pressure increase at about t=8 was the shock

reflection from the downstream wheels.

3.8 SHOCK INTERACTION WITH A MISSILE IN FLIGHT.

The last 3-D shock diffraction computation conducted under this project simulated
shock interaction at an angle of 450 with a missile in flight (at an angle of 20). The

results are shown in Figure 3-18. Here we note that: a) due to the 3-D nature of the
shock diffraction process, strong 3-D rarefaction effects are observed on the surface of
the missile; b) the slope discontinuities between the stages produced rarefaction waves;

c) strong overpressure relief was observed at angles higher than 30°; d) high overpressure
values were limited to the cone zone; and e) excellent shock adaption and resolution were
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obtained at all times; all shocks were captured as sharp discontinuities, without producing

pre- or post-shock oscillations.

3.9 SUMMARY AND CONCLUSIONS.

This section describes experience gained in applying a recently developed three-

dimensional adaptive finite element shock capturing scheme on unstructured tetrahedral

grids, to the simulation of shock wave diffraction phenomena around complex-geometry

three-dimensional structures. The 3-D surfaces were defined using a new CAD-CAM-like

user-friendly solid body generator (PREGEN3D) that includes a new automatic background-

grid generator. The volumetric grid generation (tetrahedra) from the surface triangulation

was accomplished using the advancing front method, and was rated at about 25,000 tetra-

heda per minute on the Cray-2. The computation was initiated by imposing the boundary

and initial conditions; only two levels of refinement were used to refine the shock at its

initial position. The resolution and fidelity of the simulated shock wave diffraction phe-

nomena, performed via the solution of the transient compressible Euler equations, were

enhanced by the application of the classic h-enrichment/coarsening grid adaptation scheme,

with density as the critical adaptation parameter.

The 3-D methodology was applied in this project to the simulation of shack diffraction

processes around several three-dimensional structures: a generic modern main battlefield

tank, a T-62 tank, and a typical missile in flight. The results shown in this section demon-

strate the successful application of the new 3-D adaptation procedure to shock interaction

with curved surfaces, a new capability. Excellent shock adaptation and resolution were

obtained at all times. All shocks were captured as sharp discontinuities, without produc-

ing pre- or post-shock oscillations. Several interesting three-dimensional shock diffraction

processes were identified and discussed. Among them are the time evolution of three-

dimensional Mach-stems, 3-D shock wave focusing and diffraction within comers and

within/between the wheels and wheels/treads/cover assembly, etc. The results demon-

strate that correct load determination requires the precise geometric description; simpli-

fied 2-D simulations or even 3-D computations that use a simplified geometric description

(such as representing the turret as a square block) would yield erroneous results. Among

the practical results obtained and discussed were the increased roll-over probability for a

side-impact over a back-impact, and the very high instantaneous forces exerted on some

surfaces due to the high-amplitude reflected shocks. Finally, the results demonstrate the

robust performance of the method and show, at least for the present application and prob-

ably for other strongly unsteady flows as well, considerable savings in both CPU-time and

storage over fixed-mesh structured grid schemes.
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a

b e

Figure 1-1. Initial Mesh Refinement Levels, Computational Grid and Pressure Contours for the Complete
Computational Domain (Figures la to 1c), and for an Expanded Zone Near the Box (Figures id to if).

. FM

Figure 1-2. Expanded Views of Pressure and Figure 1-3. Expanded View of Pressure Contours
Density Contours Around the Box. t=0.4. Around the Box, t=0.6.
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t=1.2
b

t=0.6

t=1.4

C
t=0.7

Figure 1-4. Expanded Views of Pressure Contours

Between the Bottom of the Box and the Top of
the Elevation: a) t=.5" b) t=0.6; c) t=0.7;
d) t=0.8; e) t=0.9; f) t=1.0; g) t=1.1; h) t=l.2;
and i) t=1.4.

d
t=0.8

e
t=0.9

M5.0
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t=1 6

a

t=2.0

d
t=2 2

t=2.6

C 
t=3 6

t=4.2

d t5.0

t-6.0

e Figure 1-8. Expanded Views of'Vorticity Con-
tours Between the Bottom of the Box and Top
of the Elevation; a) t=1.6; b) t=1 " t=2.0;

Figure 1-7. Expanded Views of Computational d) t=2.2; e) t=2.4; f) t=2.6; g) I ' t=3.6;

Grid (a), Mesh Refinement Levels (b), Pressure i) t=4.2; j) t=5.0; and k) t=6.0.

(c), Mach Number (d), and Vorticity Contours (e)
,round the Box, t=1.4.
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Figure 1-9. Expanded Views of Computational Grid
(a), Mesh Refinement Levels (b), and Pressure (c)
and Mach Number Contours (d) Around the Box,
t=2.4.

b

CI

Figure 1-10. Pressure Contours Around the Box,
t=6.0.
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.a b

Figure 2-la-b. Pressure Contours at t=0.0 for the Complete Computational Domain and for
an Expanded View of Two Grills.

a .. .

Figure 2-2a-d. Expanded Views of the Mesh Refine-
ment Levels, Density and Mach Number Contours at
t=0.125 ms, and Density Contours at t=0.18 ms.

b

C
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a

ab

Figure 2-4a-d. Expanded Views of the Computa-
tional Mesh, Mesh Refinement Levels, Density
and Mach Number Contours at t=0.35 ms.

d

S~a

e
Figure 2-5a. Expanded Views of the Density

Figure 2-3a-e. Expanded Views of the Density Contours at t=0.45 ms.

and Mach Number Contours at t=0.21 ms,
Density Contours at t=0.245 ms, and Density
and Mach Number Contours at t=0.27 ns.
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b
1>

Figure 2-5b-c. Density Contours at t=0.50 ms,
and Close Up Density Contours at t=0.50 ms.

a

b

ddC

Figure 2-6a-d. Expanded Views of the Computa-
tional Mesh, Mesh Refinement Levels, Density
and Mach Number Contours at t=0.60 ms.

e

Figure 2-8a-e. Expanded Views of the Mesh
Refinement Levels, Computational Mesh,
Density, Mach Number and Vorticity Contours
at t=1.90 ms.

Figure 2-7. Expanded View of the Density
Contours at t=0.65 ms.
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d _h

Figure 2-9a-h. Expanded Views of the Flow Near the Tip of the Front Bar: Mach Number
Contours at t=0.1375 ms and t=0.15 mis.
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c d

Figure 2-10a-d. Expanded Views of the Flow Near the Upstream Corner of the First
Chevron: Density Contours at t=0.30 ms, t=0.35 ms, and Density and Vorticity
Contours at t=0.50 ms.

-7
I I I

Figure 2-11a-g. Expanded Views of the Flow Near the Upstream Corner of the First Chevron: Density,
Mach Number and Vorticity Contours at t=0.45 ms, t=0.48 ms, t=0.49 ms, t=0.50 ms, t=0.51 ms, t=0.55
ms, and t=0.60 ms.
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Figure 3-I. Refinement Cases

2

Figure 31-2. Possible Choices for 'Inner Diagonals•'

U4~

Figure 3-3. De-Refinement Cases
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Figure 3-4. Expanded View of Superimposed Adapted Figure 3-6b. Superimposed Pressure Contours on the
Computational Mesh and Pressure Contours on the Boundaries with Pressure Contours on Two X-Y Planes
Boundaries, t=0.0 ms. (at Z=0.5 m and Z=1.5 m), t=4.2 ms.

Figure 3-5. Expanded View of Pressure Contours on -
the Boundaries, t=3.0.

Figure 3-7a. Expanded View of Superimposed AdapatedS. :',, • si n * -1V.-r- Computational Mesh and Pressure Contours on the

MIMS Boundaries, t=5.5 ms.

Figure 3-6a. Expanded View of Superimposed Adapted
Computational Mesh and Pressure Contours on the
Plane of Symmetry, t=4.2 mo.J

Figure 3-7b. Superimposed Pressure Contours on the
Boundaries with Pressure Contours on Two X-Y Planes
(at Z=0.5 mn and Z=1.5 mi), t=5.5 rm.
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(a)~

77- Figure 3-8e. Superimposed Pressure Contours on the
- Tank Surface with Pressure Contours on Two X-Y

Planes at Z=1.5 m (left) and Z=2.75 m (right),
t=9.67 ms.

Figure 3-8a-b. Adapted Computational Mesh (a) and
Pressure Contours (b) on the Tank Surface, t=9.67 nms.

Figure .3-$c-d. Pressure Contours on X-Y Planes Located Figure .3-9a-h. Adapted Computational Mesh (a)

at' let Z=0.5 m. fd) Z=1-5 m (left) and Z=').75 m (right), and Pressure Contours (b) on the Tank Surface,
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2 D-

Figure 3-11c.Sprmoe Pressure Contours on th- Pae,

Taguk Sura9can Pressure Contours on a Y-Z Plane,
(=0. at t=12.8 ms.55 is

INN

Figre -la-b Adptd Cmpuatona Meh a) nd Figure 3-11a. PeSuprimoed Contours Conthe r Tank th

Pressure Contours (b) on the Tank Surface, t=15.53 ms. Surface, t=19.69 mns.
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Figure 3-12b. Pressure Contours on the Boundaries, a
View from the Back, t=19.69 ins.
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C F I1€c

Sd

Figure 3-13a-c. Solid Body Modeling of a •

Modern Main Battlefield Tank; Several Views
Around the Tank. Figure 3-13d. Surface
Triangulation of the Tank.

Figure 3-14a-e. Pressure Contours on tile ,!
Tank Surfaces at 200, 400, 600, 800, and • e
1000 Time Steps, Respectively. -,t
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Figure 3-14f-i. Pressure Contours on the Tank
Surfaces at 1200, 1400, 2000 and 2800 Time
Steps, Respectively.

Figure 3-15a-d. Pressure Contours on Several
X-Y Planes: a) Z=0.5 m, 200 Steps; b) Z=1.5 m,
200 Steps; c) Z=1.5 m, 600 Steps; d) Z=1.0 m,
800 Steps.
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e

C

Figure 3-15e-g. Press 'ure Contours on Several
X-Y Planes: e) Z=0.5 m, 1200 Steps; f) Z=1.0 m,
1200 Steps; g) Z=1.5 m, 1200 Steps.

Figure 3-16a-d. Superposition of Pressure
Contours and Adapted Grids on the Tank
Surface, Back Impact, at 200, 400, 600 and
1000 Time Steps, Respectively.
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Figure 3 -17a-c. Superposition of Pressure
Contours and Adapted Grids on the Tank
Surface, Side Impact, at 0, 300, and 600
Time Steps, Respectively.

Figure 3-18a-d. Pressure Contours on the
Tank Surfaces: a) Tank, 300 Time Steps;b) Expanded View Between the Wheels, 

-
300 Time Steps; c) Tank, 600 Time Steps;
d) Tank, 800 Time Steps.
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7.5- Figure 3-19&-i. Comparison of Pressure-time

6 -Histories at Several Locations on the Tank;
4.5 Back Impact Vs. Side Impact; a) Station 64,

Back-end, Plane of Symmetry; b) Station 29,3 Back Deck, Plane of Symmnetry, Close to Turret;

c) Station 34, Back Deck, Plane of Symmetry,
e 1.3Further Upstream; d) Station 43, Back Deck;0 e) Station 57, Back Deck, Further Upstream;
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TIME, NON-DIMENSIONAL i) Station 84, Bottom, Plane of Symmetry.
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